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ABSTRACT 

The primary objective of this thesis is to develop a general computational 

framework to perform large scale moving boundary problems in fluid mechanics. The 

interactions of moving entities with fluid flow are common to numerous engineering and 

biomedical applications. The novel computational platform developed comprises of a) an 

efficient fluid flow solver b) an accurate and easily implemented unified formulation to 

capture the interactions of the moving bodies with the flow and c) parallel execution 

capability to enable large scale computations. The above features are formulated and 

implemented in a computer code, ELAFINT3D. The current thesis demonstrates the 

accuracy, efficiency and robustness of this framework. The performance of ELAFINT3D 

on distributed memory systems is also presented. Finally, this framework is employed to 

simulate a series of large scale, three-dimensional moving boundary problems involving 

complex interfacial motions and flow phenomena. These numerical experiments establish 

the strengths of the current tool. 
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ABSTRACT 

The primary objective of this thesis is to develop a general computational 

framework to perform large scale moving boundary problems in fluid mechanics. The 

interactions of moving entities with fluid flow are common to numerous engineering and 

biomedical applications. The novel computational platform developed comprises of a) an 

efficient fluid flow solver b) an accurate and easily implemented unified formulation to 

capture the interactions of the moving bodies with the flow and c) parallel execution 

capability to enable large scale computations. The above features are formulated and 

implemented in a computer code, ELAFINT3D. The current thesis demonstrates the 

accuracy, efficiency and robustness of this framework. The performance of ELAFINT3D 

on distributed memory systems is also presented. Finally, this framework is employed to 

simulate a series of large scale, three-dimensional moving boundary problems involving 

complex interfacial motions and flow phenomena. These numerical experiments establish 

the strengths of the current tool. 



www.manaraa.com

   

 iii 

 

TABLE OF CONTENTS 

LIST OF TABLES...............................................................................................................v 

LIST OF FIGURES ........................................................................................................... vi 

INTRODUCTION ...............................................................................................................1 
Motivation and Objectives................................................................................1 
Methods for Moving Boundary Problems ........................................................4 
Primary classifies of Cartesian Grid Method....................................................5 

Methods where the interface effects are transmitted through 
forcing functions........................................................................................6 
Methods where the interface effects are included in the discrete 
spatial operators:........................................................................................7 
The Current Method ..................................................................................9 

Parallel Computing .........................................................................................11 

NUMERICAL STRATEGY..............................................................................................15 
The Current Computational Tool....................................................................15 
The Sharp Interface Method ...........................................................................15 
Equations to be solved ....................................................................................17 
Flow Solver.....................................................................................................18 
Implicit Interface Representation Using Levelsets.........................................19 
Discretization of operators..............................................................................21 

Classification of grid points.....................................................................21 
Discretization at bulk points ....................................................................21 
Discretization at interfacial points...........................................................22 

Moving boundaries .........................................................................................32 
Iterative Solvers for the Sparse Linear Systems .............................................34 
Local Mesh Refinement..................................................................................35 

Refinement Criteria .................................................................................36 
Data Structures ........................................................................................36 
Discretization...........................................................................................37 

Results and Discussion ...................................................................................40 
Finite-difference and Finite-volume approximations..............................40 
Benchmarking the Flow Solver ...............................................................42 

Conclusions.....................................................................................................49 

PARALLELIZATION ASPECTS OF ELAFINT3D ........................................................71 
Objectives of Parallel Implementation ...........................................................71 
Parallel Architecture .......................................................................................72 
Parallel Flow Solver .......................................................................................72 

Input and Output Phases..........................................................................73 
Calculation Phase ....................................................................................74 
Domain Decomposition using METIS ....................................................76 
Definition of Ghost Region .....................................................................78 
Communication of Ghost Region using MPI ..........................................80 

Parallel Local Mesh Refinement ....................................................................81 
Parallel Sparse-Linear Solver .........................................................................85 
Other Parallel Algorithms and Miscellaneous Issues .....................................85 
Performance analysis ......................................................................................88 
Unified ELAFINT3D......................................................................................91 



www.manaraa.com

   

 iv 

 

Results and Discussion ...................................................................................91 
Flow around a stationary cylinder at Re = 300........................................91 
Flow around a transversely oscillating cylinder ......................................92 
Flow around a stationary sphere at Re= 300 ...........................................93 
Interaction of two spheres settling under gravity ....................................93 
Flutter of an settling ellipsoid..................................................................94 

Conclusions.....................................................................................................95 

SUMMARY AND FUTURE WORK .............................................................................114 
Summary.......................................................................................................114 
Future Work..................................................................................................115 

REFERENCES ................................................................................................................118 



www.manaraa.com

   

 v 

 

LIST OF TABLES 

Table 2.1Comparison with benchmark data for flow around cylinder ..............................70 

Table 2.2 Comparison of results with benchmark data for flow around a sphere .............70 

Table 3.1 CPU times for flow around a cylinder with increasing number of CPUs..........96 

Table 3.2 CPU times for data output in case of flow around a cylinder............................96 

Table 3.3 CPU times for flow around a cylinder with varying mesh densities. ................97 

Table 3.4 Performance analysis of LMR with varying no. of processors..........................97 

Table 3.5 Performance analysis of LMR with increasing refinement levels. ....................98 

Table 3.6 Timing data for flow around a sphere with a mesh size of 100x100x100.........98 

Table 3.7 Parallel performance for rendering a sphere using GENLS. .............................99 

 



www.manaraa.com

   

 vi 

 

LIST OF FIGURES 

Figure 2.1 (a) Definition of the bulk (clear circles) and interfacial (filled circles) 
points. The interface is given by the 0-levelset. (b) Standard 5-point bulk 
point stencil in 2-dimensions. (c) The configuration of a typical interfacial 
point. (d) System for evaluating the Neumann boundary condition on the 
interface and evaluation of ghost pressures. .............................................................51 

Figure 2.2 Some of the possible interfacial point situations in the 2-dimensional 
case............................................................................................................................52 

Figure 2.3 Implicit method for Neumann boundary condition on the interface. ...............52 

Figure 2.4 Illustration of the emergence of points from the solid to fluid phase 
when the sharp interface moves through the mesh ...................................................53 

Figure 2.5 Comparison of implicit and explicit schemes for Neumann boundary 
condition implementation .........................................................................................54 

Figure 2.6 Comparison of various solvers for a channel flow...........................................55 

 Figure 2.7 Comparison of error norms for finite-difference and finite-volume 
formulations.(a) Computational Setup (b) Diffusion problem (c) Convection-
Diffusion problem.....................................................................................................56 

Figure 2.8(a) Axisymmetric wake behind the cylinder at Re = 40 (b) Streamlines 
past the cylinder at Re= 80 (c) Variation of Lift and Drag coefficients at Re = 
80. .............................................................................................................................57 

Figure 2.9 Unsteady flow around a circular cylinder at Re = 300. (a)Streamlines (b) 
Pressure contours and (c) Time history of lift and drag cofficients..........................58 

Figure 2.10 Flow past an oscillating cylinder at Re =200 (a) Spanwise velocity 
contours (b) Fluctuations in spanwise velocity component at a point in the 
wake region.(c) Comparison of the present results with the Koopmann curve 
for lock-on region. The closed squares indicate lock-on frequencies and open 
square indicate no lock-on. .......................................................................................59 

Figure 2.11 The axisymmetric streamlines past the sphere. (a) Re = 50, (b) Re = 
100, (c) Re = 150, (d) Re=225, u,v vectors  on the x-y plane, (e) u,w vectors 
on x-z plane...............................................................................................................60 

Figure 2.12 Vorticity contours for Re = 270 [ a) ωz on x-y plane  b) ωx on x-z plane 
c) ωy on x-z plane ] and Re = 280 [ d) ωz on x-y plane  e) ωx on x-z plane f) 
ωy on x-z plane] ........................................................................................................61 

Figure 2.13 Vorticity contours for Re = 300 [ a) ⎤z on x-y plane b) z ⎤x on x-z plane 
c) x ⎤y on x-z plane. ..................................................................................................62 

Figure 2.14 Vortical structures for flow at Re = 300. Oblique views................................63 

Figure 2.15 Time variation of lift and drag coefficients at Re = 300. ...............................64 



www.manaraa.com

   

 vii 

 

 Figure 2.16 Flow characteristics for Re = 190 and Fi = 0.07 KC = 0.0 Sf = 0.0 [ a) 
vorticity, ωz on x-y plane  b) w velocity countours on x-y plane c) density 
contours on x-y plane ]. ............................................................................................65 

Figure 2.17 Probe velocity profile for points in the wake of the sphere [Re = 190 
and Fi = 0.07 KC = 0.0 Sf = 0.0] ..............................................................................66 

Figure 2.18 Vorticity contours on z = 7.5 plane at different stages in the oscillation 
cycle.[Re = 190 and Fi = 0.07 KC = 0.2 Sf = 0.35]..................................................67 

Figure 2.19 Vortical structures for the flow around oscillating sphere flow at Re = 
190 Fi = 0.07 KC = 0.2 Sf = 0.35 (a) Oblique view (b) x-y view (c) x-z view........68 

Figure 2.20 Probe velocity profile for points in the wake of the sphere [Re = 190 
and Fi = 0.07 KC = 0.2 Sf = 0.35] ............................................................................69 

Figure 3.1 Illustration of the three phases of multilevel graph. .......................................100 

Figure 3.2 Different ways to coarsen a graph ..................................................................101 

Figure 3.3 Illustration of Ghost Region. (a) Discretization of a mesh point next to 
partition boundary (b) Extent of Ghost Region near partition boundary (c) 
Discretization of mesh point at the mesh interface.................................................102 

Figure 3.4 Flow around stationary cylinder at Re = 300. a) Computational Setup b) 
Domain decomposition c) Unsteady vortex shedding d) Close up view of the 
cylinder with mesh refinement. e) Time history of drag and lift coefficients. .......103 

Figure 3.5 Flow around an transversely oscillating cylinder a) Vortex shedding 
from the oscillating cylinder. b) The time history of drag and lift coefficients......104 

Figure 3.6 Flow features on z= 7.5 plane.for flow around a sphere. a) The 
adaptively refined mesh in the wake of a sphere b) Contours of z-component 
of vorticity...............................................................................................................105 

Figure 3.7 Vortical Hairpin structures in the wake of a sphere a) x-y view b_ x-z 
view and c) isometric view. vorticity......................................................................106 

Figure 3.8 The vertical velocity profile and the positions of the spheres. a) Vertical 
velocity profile with collision. b) The vertical position of the spheres in time. .....107 

Figure 3.9  Flow around two interacting sphere on y= 5.at the instant of collision  a) 
The vertical velocity contours on the plane in isometric view b) The xz view 
of y= 5.0 plane depicting the velocity contours......................................................108 

Figure 3.10 Flow  around two interacting sphere at the instant of collision  a) The 
mesh refinement in the wake of the spheres. b) The position of the two 
spheres relative to each other and also relative to y = 0.5 plane. c) The iso-
contours of  λ2 indicating the vortical structures. d) An isometric view of the 
vortical structures....................................................................................................109 

Figure 3.11 Flow  around an oblate ellipsoid fluttering under gravity plotted on y = 
25 plane. a) The contours of y-component of vorticity b) The adaptive mesh 
created in regions of high vorticity. ........................................................................110 



www.manaraa.com

   

 viii 

 

Figure 3.12 The trajectory of the oblate settling under gravity. ......................................111 

Figure 3.13 Different views of the vortical structures emanating from a settling 
ellipsoid...................................................................................................................112 

Figure 3.14  The velocity components of the ellipsoid as is moves with fluid forces 
a) The vertical fall velocity, b) The transverse velocity developed mainly due 
to the initial orientation and inertia, and c) The angular velocity of the 
ellipsoid as it rotates  due to the fluid dynamic moments.......................................113 

 



www.manaraa.com

  1 

  

 

INTRODUCTION 

Motivation and Objectives  

 

The primary objective of this thesis is to develop a general computational 

framework to simulate large scale moving boundary problems involving fluid flow. The 

presence of interacting objects in fluid flow is a common feature to numerous 

engineering applications. In many cases, the interaction of these immersed entities with 

the flow is critical to the dynamics of the system. For instance, biomedical phenomena 

such as the dynamics of heart valves or the mechanics of GI tract, material processing 

applications such as interaction of solidifying metallic fronts with ceramic particles in 

metal-matrix composites, automotive/aerospace/marine applications involving design and 

analysis of vehicles and structures, all involve embedded objects and the flow evolving in 

tandem. The motivation of the current work is to develop an efficient computational tool 

to numerically simulate the flow-object interactions and thereby the evolution of the 

system. 

 

The following aspects are to be considered while simulating these applications: 

Dynamics of the embedded objects: The dynamics of an entity immersed in the flow is 

determined by its geometric definition, its kinematic constraints and its interactions with 

the flow. In general, the immersed objects have complicated shapes, be it an advancing 

dendritic front or the GI tract enacting peristaltic motions. These complicated geometries 

perform complex motions based on their physics. For instance, the trajectories of leaves 

falling from a tree, plaque growth in carotid artery, growth of the dendritic pattern, 

flexible membranes etc., are each driven by a different mechanism. Other interfacial 

mechanisms such as droplet breakup, evaporation, coalescence etc. that result in 

topological changes are prevalent in many applications. Dynamic interactions with other 
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immersed objects (e.g. collision of red blood cells or adhesion of platelets etc) require 

modeling in many applications. 

Complex Flow Phenomena: Besides the interface dynamics, the fluid flow itself is 

complex in itself. Many of the real time flow applications involve three-dimensional 

unsteady flows. The flow features (gradients) and the flow paths can vary in the interval 

of observation. Depending on the dominant fluid forces, the flow can transition through 

different flow regimes. To efficiently capture these evolving flows to the required 

accuracy is a significant computational challenge.  

 

In the current work, these challenges are addressed through a computational 

framework called ELAFINT3D (Eulerian Levelset based Algorithm For Interfacial 

Transport in 3D). This framework features: a) a Cartesian grid based solver for the fluid 

flow b) the Level-set algorithm to represent and evolve the embedded objects c) the 

Sharp-Interface Method to capture the interfacial phenomena d) Sparse matrix solvers to 

efficiently solve the discrete equations e) an Adaptive Local Mesh Refinement algorithm 

to obtain accurate solutions and d) MPI based parallel heuristics to simulate large scale 

problems in reasonable time.  

 

The main contributions of this thesis are to conceive and formulate a numerical 

technique to capture “fluid flow – embedded object” interactions. This numerical 

technique is implemented in the computer code ELAFINT3D, and is used to solve a wide 

variety of moving boundary problems. The specific contributions of this thesis are a)  to 

develop a Cartesian grid fluid flow solver with finite-difference schemes b) to develop a 

Sharp Interface Method to incorporate interfacial physics c) to boost the efficiency of the 

calculations by employing fast sparse matrix solvers and d) to enable high performance 

computing through parallel porting of the framework. These features along with Local 

Mesh Refinement are used to accurately solve a series of two and three dimensional 
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problems. The computational tool and the results from the numerical experiments are 

presented in the subsequent chapters of this thesis. The rest of this chapter is organized to 

review the state of the art in fluid-flow solvers for moving boundary problems. Also 

reviewed are the general practices in the high performance computing community with 

focus on CFD applications.  
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Methods for Moving Boundary Problems  

 

Computational methods for flows in the presence of moving solid boundaries can 

be broadly classified into Lagrangian (Anderson et al. 1995; Glimm et al. 1998; Johnson 

et al. 2002; Monaghan and Kocharyan 1995; Tezduyar 2001) and Eulerian categories 

(Anderson et al. 1998; Benson 1995; Brackbill et al. 1992; Fedkiw et al. 1999; Glowinski 

et al. 2001; Osher and Fedkiw 2001; Sethian and Smereka 2003; Udaykumar et al. 

2002b). In Lagrangian methods, calculations are performed using meshes or particles that 

follow the motion of the solids while in Eulerian methods the mesh remains fixed.  A 

large volume of literature covers the solution of fluid-structure interaction problems with 

moving body-fitted meshes, using finite-volume (Glimm et al. 1988; Shyy et al. 1998) 

and finite-element  (Tezduyar 2001) methods. Body-fitted moving mesh methods carry 

sharp interface definition and application of boundary conditions on the moving solid 

surface is straightforward. The main difficulty with moving body-fitted meshes is the 

complexity involved in following arbitrary boundary motions and topological changes 

while maintaining grid quality (Johnson and Tezduyar 1999). Thus, while for low and 

moderate deformations moving grid methods are a good choice, for truly large 

deformations it may be desirable to separate the boundary movement from the grid used 

to solve the flowfield.  

 

Several strategies have been used in the past to handle the effects of moving 

immersed interfaces while computing the flowfield on a fixed mesh. Typically such fixed 

grid methods have relied on simple Cartesian meshes for solving the flow field (Peskin 

1977; Udaykumar et al. 2001; Unverdi and Tryggvason 1992) although unstructured 

triangulated meshes have also been employed (Barth and Sethian 1998; Chessa et al. 

2002; Glowinski et al. 1999). In developing Cartesian grid methods, special attention 
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needs to be paid to the imposition of boundary conditions at the immersed boundaries. In 

particular, since the immersed boundary can cut through the underlying Cartesian mesh 

in an arbitrary manner, the main challenge is to construct a boundary treatment which 

does not adversely impact the accuracy and conservation property of the underlying 

numerical solver. This is especially critical for viscous flows where adequate resolution 

of boundary layers which form on the immersed boundaries is required. Consequently, 

Cartesian grid methods have been used extensively for Euler flows (Almgren et al. 1997; 

Bayyuk et al. 1993; Pember et al. 1995; Quirk 1994) whereas methods for viscous flows 

are still being advanced.  

Primary classifies of Cartesian Grid Method  

 

Cartesian grid methods now come in several flavors, both in the diffuse and sharp 

interface categories. Unlike body-fitted curvilinear grid finite-volume methods or 

unstructured finite-volume and finite-element methods which are fairly standardized, the 

various Cartesian grid methods differ in implementation details and the choice of a 

specific implementation depends on the problem to be solved and the demands of 

accuracy, interface definition etc. Table 1.1 shows a comparison of the two categories. 

Typically, diffuse interface methods have been deemed to be simpler to implement and 

therefore have found wide usage (Anderson et al. 1998). In such methods the onus is on 

designing the source terms so that the formulation approaches the sharp interface limit for 

vanishing interface thicknesses. Although straightforward to formulate, sharp interface 

methods have been considered to be somewhat more difficult to implement and therefore 

their use has been restricted to some specific situations and to a few practitioners. 

However, it has been demonstrated with the current method (Marella et al., 2004; Liu et 

al. 2004; Yi and Udaykumar 2004) that with a proper framework, sharp interface 
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methods can be developed and implemented with considerable ease and applied to a 

variety of moving boundary problems. 

Methods where the interface effects are transmitted through 

forcing functions 

 

Perhaps the most commonly used fixed grid approach for moving boundary 

computations involving solid-fluid as well as fluid-fluid interfaces is the immersed 

boundary method due to Peskin (Peskin 1977).  In the original immersed boundary 

method as well as later versions, the interaction of the boundary with the fluid is effected 

using smoothed delta-functions located at the boundaries. The effect of the boundaries, in 

particular boundary forces (such as elastic forces in structures, tethering forces and 

surface tensions) are transmitted to the momentum equations as source (or forcing) terms: 

fupuu
t
u rrrrrr
r

+∇+∇−=∇+
∂
∂ 21. υ

ρ
  1.1 

here f
r

is the forcing function that represents the effect of the immersed boundary. 

Typically a numerical δ-function with a support of a few mesh widths is used to convert 

singular surface forces (such as surface tension) into volume forces f
r

. The strategy of 

transmitting interface effects to the flow field through source terms has also been used to 

solve problems in multiphase flows (Marella and Udaykumar 2004; Tryggvason et al. 

2003; Udaykumar et al. 1999) and solidification (Al-Rawahi and Tryggvason 2002). 

However, one shortcoming of these methods is that discontinuities at the immersed 

boundary are smeared across a few cell widths. It has been shown  (Leveque and Li 

1994) that such smearing can adversely impact the accuracy of solutions when the 

boundary motion is closely coupled with the evolution of surrounding fluid flow. There 

are also issues involved with stability and stiffness of the computations (Cheng and 

Peskin 1992; Stockie and Wetton 1999), particularly when the embedded objects deform 
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along with the flow.  Improvements to the delta-function based immersed boundary 

methods have appeared in the literature in recent years(Lai and Peskin 2000; Lee and 

Leveque 2003; Roma et al. 1999).  In the finite-element setting the fictitious domain 

method (Adalsteinsson and Sethian 1995; Glowinski et al. 1999; Patankar et al. 2000) 

and the immersed finite element method ( (Wang and Liu 2004)) have followed this idea 

of transmitting the boundary forces to the fluid using an interaction source term. 

However, a considerable number of papers on immersed boundary methods in recent 

years have deviated from the use of delta-functions in transmitting boundary forces to the 

fluid. For example, in the finite difference/ finite volume methods presented in several 

recent papers (Balaras 2004; Fadlun et al. 2000; Kim et al. 2001; Tseng and Ferziger 

2003) , the idea of using a forcing term in the momentum equation has been retained. 

These (non-smoothed) forces are placed at points that adjoin the immersed boundary 

(either inside or outside the solid object) in order to impose the appropriate velocity 

boundary conditions on the solid surface. Thus, unlike the original immersed boundary 

method of Peskin and its derivatives, these new immersed boundary methods are in fact 

sharp interface methods.  

Methods where the interface effects are included in the 

discrete spatial operators:  

 

There are sharp interface methods, however, that do not use forcing terms but 

incorporate the presence of the embedded boundaries into the discrete form of the 

Navier-Stokes equations.  Thus, in contrast with the above approach, the momentum 

equation is retained in the form: 

upuu
t
u rrrrr
r

21. ∇+∇−=∇+
∂
∂ υ

ρ
  1.2  
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During the discretization procedure however the spatial differential operators ( 2,∇∇
r

) in 

the equation are constructed at points that adjoin the interface in such a way that the 

interfacial jump conditions are incorporated. Examples of this class are the immersed 

interface method (Lai and Li 2001; Leveque and Li 1995; Li and Lai 2001), the sharp 

interface method (Udaykumar et al. 2003; Udaykumar et al. 2002b; Udaykumar et al. 

2001), the ghost fluid method (Fedkiw et al. 1999; Liu et al. 2000) and the XFEM 

method (Chessa and Belytschko 2003; Chessa et al. 2002; Dolbow et al. 2001; Sukumar 

et al. 2001). The immersed interface method (abbr. IIM) (Leveque and Li 1995) enables 

a sharp interface treatment by casting the governing equations in a coordinate system 

with axes oriented with the local normal and tangent to the interface. Problems involving 

embedded fluid-fluid interfaces with singular sources and jumps in material property 

across the interface have been solved using this approach (Leveque and Li 1995; Li and 

Lai 2001). The method seeks to preserve second-order accuracy at points adjacent to the 

interface as well as away from it. In Ghost Fluid Method (abbr. GFM) (Fedkiw et al. 

1999)the governing equations are discretized along the Cartesian coordinate directions. 

Only first-order accuracy is demanded at interface-adjacent points. In both IIM and GFM, 

jumps and singular sources at the interface are incorporated into the discrete operators in 

the transport equations. In the sharp interface method (Udaykumar et al. 2002b; Ye et al. 

1999) a finite volume technique is used to discretize the equations within the domains 

separated by the embedded boundary in such a way that information is not smeared at the 

immersed boundary. This requires reshaping of the control volumes through which the 

interface passes and the integration of the weak form of the governing equations over 

non-rectangular control volumes. Second-order accuracy is maintained at bulk as well as 

interface-adjacent grid points. Problems involving fluid-structure interactions 

(Udaykumar et al. 2002b; Udaykumar et al. 2001) and solidification (Udaykumar and 

Mao 2002; Udaykumar et al. 2002a; Udaykumar et al. 2003; Udaykumar et al. 1999) 

have been solved using this approach. In the finite element community, the XFEM 
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method (Sukumar et al. 2000) follows a similar strategy, in that the elements through 

which the boundary passes are enriched (i.e. these elements are subdivided and conform 

locally to the immersed boundary; stated differently degrees of freedom are added) to 

facilitate integration of the weak form of the governing equations.  

The Current Method 

 

The key issues in developing a numerical tool for moving boundary problems are 

accuracy, robustness, speed, ease of formulation and ease of implementation. Even 

though the sharp interface methods perform at par (if not better than) diffuse interface 

methods in the above aspects, they have been considered to be somewhat more difficult 

to implement. In contrary to the above conception, the current work demonstrates that 

with a proper framework, sharp interface methods can be developed and implemented 

with considerable ease and applied to a variety of moving boundary problems (Marella et 

al., 2004; Liu et al. 2004; Yi and Udaykumar 2004).  

 

The current method improvises on the previous Sharp Interface Method of  

Udaykumar et al. (2001,2002b). Several key choices have been made in the current work 

to bypass the implementational difficulties apparent in the previous approach. The 

mainstays of the previous approach (FV+MT) were a finite-volume discretization (FV) of 

the governing equations and a Lagrangian marker tracking (MT) algorithm to represent 

and evolve the moving boundaries. The finite volume approach reshapes the interfacial 

control volumes (cut-cells) to align one of the faces with the interface. This enables the 

implementation of the interfacial conditions in a sharp manner. Even as FV+MT 

approach works effectively in 2D, the effort in formulating the cut-cell configurations is 

immense for 3D moving boundary problems. The current approach circumvents this issue 

by adopting finite difference (FD) schemes for the governing equations. The 
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operators/interfacial conditions are evaluated/applied in a sharp manner at the exact 

interfacial location. The exact interfacial location is calculated easily from the level-set 

field (LS). Unlike MT, the LS approach doesn’t require surface meshing or re-meshing to 

represent/track the embedded object. Instead, an Eulerian level-set field is evolved in 

time to track the moving entities. By choosing FD+LS, the current method is easily 

extended to three-dimensional problems. 

 

The current method differs from the other approaches in the following aspects of 

implementation:  

a) The current approach, being a sharp-interface method, is different from the 

diffuse interface methods (e.g. immersed boundary method) which smear the 

interfacial effects over few cell widths.  

b) Currently, the interfacial effects are accounted for, by carefully devising discrete 

spatial operators. By adopting this approach, there are no extra source terms in the 

interfacial cells to impose interfacial boundary condition unlike (Balaras 2004; 

Fadlun et al. 2000; Kim et al. 2001; Tseng and Ferziger 2003). 

c) By employing finite-difference discretization rather than finite-volume 

discretization (Udaykumar et al.(2001,2000b)) eases the construction of discrete 

operators, more significantly in 3D. In addition to FD, choosing level-set 

approach for interface tracking is advancement over marker tracking approach 

employed previously. 

d) Finally, with the FD+LS combination, the current method convolves the 

governing equations, the interface representation and the interfacial conditions 

into the discrete operators ( 2, DD ∇∇
r

). By doing so, a unified formulation that 

incorporates a variety of interface combinations (solid-fluid, fluid-fluid, solid-

fluid-solid etc.) has been devised. The unified formulation is facilitated by switch 

functions which are functions of the level-set field and the type of interface. These 
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switch functions are the byproducts of the convolution of the governing equations 

of the problem. This aspect differentiates the current approach from the other 

methods (GFM, IIM etc) which are specific to a certain class of interfaces. 

 

The above features make the current approach novel in its formulation and far 

more versatile in its applicability. The unified framework, which accounts for a variety of 

interfaces in a sharp manner, also shows that sharp interface methods can indeed be 

easily implemented by carefully formulation of the operators. The details of formulation 

and the implementation are presented in the later parts of this thesis. 

 

Parallel Computing 

 

Traditionally, the computing power has set the upper bound on the complexity of 

the problems that can be solved using computational techniques. A modest task such as 

calculating flow past a sphere (Re=300) with 2x106 grid points takes about 2-3 weeks to 

obtain time-history of flow characteristics such as drag and lift coefficients on a HP-UX 

J2000 workstation. The solution turn-around time for many other complex physics-

intensive problems such as heart valve simulation, a droplets splashing on a solid 

surfaces, interaction of growing solidification fronts with solid particles in metal matrix 

composites, peristaltic motion in GI tract will be enormous. Despite the advances in 

computer technologies in the recent past, there is a never ending need for computing 

resources in increasingly sophisticated computational fields such as CFD.  

 

Even though, invention of faster computer chips is an option, many researchers, 

during the last decade or more, have viewed parallel computing or multiprocessing as an 

attractive and practical alternative. The strategy being to exploit the resources of 
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“numerous faster computers” instead of “a single fastest computer” to attempt solve the 

problems of interest. This idea has gained impetus with developments in computer 

architecture and standardization of software for parallel programming. A summary of the 

various system architectures and the software options is presented below. 

 

The classic von Neumann machines which are Single Instruction Single Data 

(SISD) systems are traditional single processor machines. Basic extensions to these 

systems are the vector processors (e.g CRAY C90, NEC SX4 etc) which obtain 

parallelism by issuing vector instructions. For example, the addition of two vectors “a” 

and “b” of size 100 is a single instruction on a vector processor as opposed to 100 

instructions on a classic von Neumann machine. These machines scale well only for 

small problems with regular structure. The Single Instruction Multiple Data (SIMD) 

systems (e.g CM-1 and CM-2 produced by Thinking Machines) are the successors of the 

vector machines. This class of systems has a single control unit and many subordinate 

Arithmetic Logic Units (ALUs). These systems traditionally use data parallel 

programming languages (e.g. HPF) to achieve parallelism. Data parallelism relies on 

distributing a certain data structure among all the processes and each process performs 

the same set of instructions on its portion of the data structure. Their operations are 

synchronous and they scale well for regular structures. However they do not scale well 

for irregular program structures and long conditional branches in the programs. 

 

The most popular architectures are the general Multiple Instruction Multiple Data 

(MIMD) systems. In these systems, the each processor is a full-fledged CPU. There are 

two classes of MIMD systems: the shared-memory systems and the distributed memory 

systems. The shared-memory systems consist of a collection of processors and memory 

modules interconnected by a network. The shared memory system is the most appealing 

parallel architecture to the programmer, given an access to all the memory modules by all 
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the processors. However, scalability is an issue since the memory access speeds are non-

uniform for each processor and is dependent on the hardware layout. The most popular 

programming paradigm for this class of machines is OpenMP. Even though the OpenMP 

is a well understood and effective programming library, the main drawback is in building 

scalable shared-memory MIMD systems with large number of processors (more than 

128). 

 

Distributed memory systems remain more popular architecture and they scale 

better compared to the shared memory systems. In distributed memory systems, each 

processor has its own private memory and the processors are connected in a network. The 

main drawback for these systems has been that they are difficult to program. Message 

passing has been the principal strategy to develop parallel algorithms for these 

architectures. Libraries such as Message Passing Interface (MPI) provide the required 

functions for effective communication across the processors. The scalability is however 

dependent on careful programming using the MPI directives. Issues of data 

communication speeds and relative speeds and locations of various processors are to be 

accounted for in the programming. With an increasing popularity of massively distributed 

network of workstation and Grid Computing, distributed MIMDs are the architectures for 

the future. 

 

The most important issue in parallel CFD is to design numerical algorithms that 

efficiently exploit the capabilities of the parallel architecture. Especially, given that the 

flow configurations to be simulated are more often problem specific, to develop generic 

algorithms that are effective on architectures comprising of as many as several hundreds 

of processors is non-trivial. In the present case, the objective is to develop a parallel 

algorithm to be implemented on distributed memory systems such as Linux Clusters. This 

section details the general strategy for parallelization on distributed MIMD systems. 
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Domain decomposition is a more appropriate and efficient parallelization method 

for distributed MIMD architectures. The idea is to divide the computational domain into 

several subdomains and carry out the numerical solution on each subdomain separately. 

An information exchange within the set of subdomains is performed during the solving 

process to update each of the subdomains. This ensures that the solution procedure is 

carried out independently on each subdomain and in parallel on various processors. 

 

The key factors in this procedure are to design a data decomposition strategy that 

ensures load balance among the processors and to develop a communication paradigm 

that minimizes the communication overhead during the synchronization phase. There are 

software packages such as JOSTLE, METIS that are available for domain decomposition. 

Given the nodal connectivities, the mesh partitioning programs such as METIS not only 

decompose the domain into well-balanced partitions but also minimize the number of 

edges being cut, thereby minimizing the communication costs. METIS also facilitates 

domain decomposition based on the nodal weights. For example, in complex flows 

involving immersed objects or multi-physics problems if the nodes are assigned weights 

based on the computational costs, METIS balances the computational load in each 

partition based on these nodal weights. The mesh partitioning software also has to 

account for disparity in the processor speeds across the network. 

 

For the updating phase of the algorithm, the usual approach is to create a halo or 

ghost region around each domain partition. This halo region comprises of the inter-

processor dependencies of the partition boundary mesh points. At the end of each 

solution process, the halo region of each subdomain is updated for the subsequent 

calculations. Updating step is essentially a synchronization process which is done by 

communicating the proper solution to the nodes in the halo region using message passing 
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such as MPI. The effectiveness of the communication paradigm is determined by the 

appropriate placement of message passing directives in the program. 
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NUMERICAL STRATEGY 

The Current Computational Tool  

 

This chapter presents a computational framework for simulating three-

dimensional incompressible flows and heat and mass transport around complex stationary 

or moving solid boundaries. The key components of this framework are: 

a). An accurate and efficient Sharp Interface Method to solve fluid flow around 

moving embedded objects. 

b). A Local Mesh Refinement algorithm that adaptively resolves the computational 

space to accurately capture the flow physics. 

The current chapter discusses the algorithmic and implementation specifics of each of the 

above components. 

The Sharp Interface Method  

 

A fixed grid sharp interface technique for solving flows with embedded moving 

boundaries requires a) an effective interface tracking method that allows for sharp 

interface identification, and b) an appropriate treatment of the interface-adjacent grid 

points to develop an accurate discretization procedure so that boundary conditions on the 

embedded boundaries are applied without smearing.  

 

In the current method these two issues are addressed by using a) level-set methods 

to represent and track the moving interface and b) a finite-difference discretization of the 

governing equations with modifications of the stencils for the interfacial cells to 

incorporate the effect of the immersed boundary. The current method improves upon the 

sharp-interface method (Udaykumar et al. 2002b) which employs markers to track the 

interfaces and finite-volume discretization with interfacial cell reshaping to account for 
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the presence of immersed object. The current choice of finite-difference discretization in 

combination with level-set method for surface tracking circumvents the explicit surface 

tracking and cut-cell reshaping issues that arise in extending the sharp-interface method 

(Udaykumar et al, 2002b) to three dimensional problems. 

 

The current method has been implemented in a computer code called 

ELAFINT3D (Eulerian Level-set-based Algorithm For INterfacial Transport in 3D). The 

salient features of the approach are:  

a). A second-order accurate Cartesian grid based finite-difference scheme to 

discretize incompressible Navier-Stokes equations. The discretization depends 

essentially on convolving the differential operators with the distance function 

field. The result is an easily implemented algorithm where the discretization of 

the governing equations at all points (i.e. away from as well as adjoining the 

interface) can be presented in a unified format. 

b). A mesh-based level set method to represent the immersed geometry and track the 

moving boundaries. The geometry is communicated to the flow solver solely 

through the distance function field.  

c). A sharp-interface embedded boundary treatment using an appropriate 

modification of the stencil for the mesh points adjoining the boundaries. This 

approach does not smear discontinuities at the interface and does not require 

forcing terms to transmit boundary effects to the fluid.  

d). A Krylov subspace based iterative method to efficiently solve the matrix system 

resultant from the discrete governing equations, especially the Pressure Poisson 

equation. 

 

The rest of this chapter is designed to elucidate algorithmic and implementational details 

of the features in ELAFINT3D. The present framework, with certain adaptations, has 
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been applied to problems such as droplet-wall interaction (Liu et al. 2004) and 

solidification (Yi and Udaykumar 2004).  

Equations to be solved 

 

The flows of interest in the current work are viscous incompressible flows with 

density variations due to temperature or solutal inhomogeneities. The differential form of 

the governing equations for mass and momentum conservation (under Boussinesq 

approximation) are: 
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In the above set of equations, the velocity ( ur ) and the pressure (p) are the 

primitive flow variables. The symbols 0ρ ,µ and gr correspond to the reference density, 

viscosity and acceleration due to gravity vector respectively. The unperturbed and 

perturbed components of density and pressure ( p,ρ ) are given by ( BB p,ρ ) and ( ',' pρ ) 

respectively. The hydrostatic equilibrium ( gdzdp BB ρ−= ) of the basic undisturbed 

density and pressure distributions ( BB p,ρ ) is already incorporated in Equation 2.2. 

 

Based on the physics of the problem, characteristic velocity, length and density 

scales (U0, D and 0ρ ) are chosen to non-dimensionalize the governing equations. The 

governing equations transform to the following dimensionless form, 

0. =∇ ur
r
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In the above equation, µρ DU 00Re =  and NDUFr 0=  represent the Reynolds 

number and internal Froude number respectively, where N is the buoyancy frequency 

defined as ( )( )dzdgN Bρρ0= . The characteristic scales will be defined (based on the 

problem physics) separately for each of the simulations in this work. The density 

variations in the domain are neglected in all cases except those involving stratified flows 

(Lin et al. 1992).  

Flow Solver 

 

A cell-centered collocated arrangement of the flow variables is used to discretize 

the governing equations. A two-step fractional step method (Ye et al. 1999; Zang et al. 

1994) is used to advance the solution in time. The first step evaluates an intermediate 

velocity by solving an unsteady advection-diffusion equation.  
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where the intermediate velocity *ur  is evaluated with central-difference discretization 

schemes for convection and diffusion terms. The convective terms are treated explicitly 

and discretized using a second-order accurate Adams-Bashforth method: 

( )113
2
1 −− ∇⋅−∇⋅=∇⋅ nnnn uuuuuu rrrrrrrrr   2.8 

The diffusion terms are treated semi-implicitly using Crank-Nicholson scheme: 

( )nuuu rrr 2*22
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The second fractional-step involves the correction of the intermediate velocity field *ur to 

enforce mass conservation: 

p
t
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∆
−+ rrr *1

  2.10 

where the pressure field p is evaluated to impose a divergence-free velocity field at time 

step n+1.  This is done by taking the divergence of Eq. 2.10 to obtain a Poisson equation 

for pressure: 
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The final semi-discrete form of the equations including each of the above discretization 

schemes is as follows: 
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The intermediate velocity is then corrected to obtain the final divergence-free velocity 

field: 

ptuu n ∇∆−=+
rrr *1   2.14 

Implicit Interface Representation Using Levelsets 

 

Embedded surfaces are represented implicitly on the mesh using a standard level-

set approach (Osher and Sethian 1988; Sethian 2001; Sethian and Smereka 2003). In 

addition to the flow variables, the level-set method advects a scalar field φl, where 

subscript l denotes the lth embedded interface. The value of φl at any point is the signed 

normal distance from the lth interface with φl<0 inside the immersed boundaries and φl>0 



www.manaraa.com

  21 

  

 

outside. The interface location is implicitly embedded in the φl-field since the φl = 0 

contour represents the lth immersed boundary.  

 

In case of moving interfaces, the motion of the boundary is tracked by advecting 

the level set using: 

0.)( =∇+ lltl V φφ
rr

  2.15         

where lV
r

 is the lth level-set velocity field. A fourth-order ENO scheme in space and 

fourth-order Runge-Kutta integration in time are used for the evolution of the level-set 

field. Since lV
r

 is prescribed by the physics only on the interface (i.e. on the zero-level-

set), the value of velocity at the grid points that lie in the narrow band around the zero-

level set needs to be obtained. This is done by extension of the interfacial velocity ( 

(Sethian 2001)) away from the front using: 

0. =∇+ ψψτ

rr
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where ψ is any quantity (such as interface velocity components xlV )(
r

 or ylV )(
r

) that needs 
to be extended away from the interface. A choice for the extension velocity is 

lllext signV φφφ ∇∇= )(
r

.  This populates the narrow band around each interface in the 
time )( xO ∆=τ with a level-set velocity that has been extended outward from the interface 
in a direction normal to it. A reinitialization procedure (Sussman and Fatemi 1999; 
Sussman et al. 1998) is carried out after level-set advection to return the φl-field to a 
signed distance function, i.e. to satisfy 1=∇ lφ

r
. Suppose 0)( lφ  is the level-set field prior 

to re-initialization. The following equation is solved to steady state to re-initialize the 
level-set field. 
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with the initial condition )()()0,( 0 xx ll
rr φφ = . 

The calculation of normal and curvature of the interface from the level-set field is 

simple. The normal is given by: 
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lln φφ ∇∇=
rrr   2.19 

and curvature is obtained from: 

nr
r

.∇−=κ   2.20 

Discretization of operators 

Classification of grid points 

 

The grid points on the Cartesian mesh are classified as bulk points and interfacial 

points. The latter are points that lie immediately adjacent to the immersed interface.  

Figure(a) illustrates an immersed interface and the points that are classified as interfacial 

points, i.e. points that satisfy the condition  0)()( , ≤nbljil φφ , where nb denotes an 

immediate neighbor along the coordinate directions.  The discrete operators at the 

interfacial points are different from those that apply at the bulk points. The strategy 

adopted to deal with this situation for the differential operators in the governing equation 

are discussed below.   

Discretization at bulk points 

 

A standard 5-point central-difference stencil applies for a typical bulk point (i.e. a 

grid point that does not adjoin the embedded interface) in a two-dimensional Cartesian 

mesh. While only 2-dimensional situations are shown in the figures for ease of 

visualization, the discussion below carries over to 3-dimensions. The three-dimensional 

counterpart would involve a 7-point stencil and the discretization for the momentum 

equations is identical in all the three dimensions.  

 

The second derivative w.r.t.  x in the diffusion term is discretized as follows: 
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while the convection term in the x-direction is obtained from: 
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jiu ,21±   are the  velocities on the cell faces. Similar considerations apply along the 

y- and z-directions. 

Discretization at interfacial points 

 

As pointed out before, the main challenge in sharp interface fixed-grid methods is 

to accurately impose interfacial conditions in the discrete system of equations. Moreover, 

a sharp-interface method demands one-sided discretization for all the partial derivatives 

to avoid smearing of the interfaces.  For the case of immersed solid-fluid boundaries, as 

in fluid-structure interaction problems, the no-slip and no-penetration velocity boundary 

conditions are applied on the solid surfaces. For small Strouhal numbers the Neumann 

condition for pressure applies on such boundaries (Udaykumar et al. 2002a). These 

boundary conditions are then supplied to the governing equations through the 

discretization at the interfacial points.   

22 x∂∂ ψ  with a Dirichlet boundary condition on the 

embedded boundary. 

Second derivatives need to be computed in the diffusion terms in the momentum 

as well as scalar transport equations and in these cases typically a Dirichlet condition 

applies at the boundary. With particular reference to the point (i, j) in Figure(c), this point 
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lies in the fluid and thus the velocities, scalars (temperature and species concentration) 

and pressure are computed at this point. Note that for points that lie in the solid only the 

temperature and species fields are computed. In discretizing 22 x∂∂ ψ  at point (i, j) in 

Figure(c), the neighbor point (i+1,j) lies across the interface in the solid and hence cannot 

be used in discretization.  In order to include the interfacial values (i.e. apply interfacial 

conditions), it is necessary to find the location where the 0-levelset intersects the line 

joining the cell-centers (indicated by the square symbols in Figure(c)). In the following 

expressions for the coefficients frequent use will be made of the quantity xxI ∆∆=χ   

(see Figure(c)), where Ix∆  is the distance between the cell center and the intersection of 

cell centerlines with the interface (filled square); x∆ is the nominal cell width. By noting 

that the intersection point has a zero level-set value, χ can be easily evaluated using the 

level-set information at (i,j) & (i+1,j): 
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Note that in evaluating the quantity χ a linear profile is assumed for the distance 

function between adjacent grid points.  Higher-order approximations of the geometry can 

be implemented as well (Chopp 2001; Strain 2001). 

 

The second-derivative can be estimated to second-order accuracy using the form: 

jijijijijijiIIx ,2,2,1,1,,2

2
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where Iψ  is the value on the interface at the location I+x(Figure(c)). 

Using Taylor series expansions for each of jijiI ,2,1 ,, −− ψψψ  about point (i,j) and 

further demanding that 22 x∂∂ ψ  be estimated to O( 2x∆ ) yields the following 

expressions for the coefficients. 

))2)(1((6 2xI ∆++= χχχα   2.26 
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In practice the above implementation may present difficulties due to the singular 

behavior of αI as χ→0. Therefore for small values of χ (< 0.01), i.e. when the interface is 

very close to the mesh point, the value χ is replaced by max(χ,0.01). This involves a 

slight perturbation of the boundary within a grid cell and decreases the order of accuracy 

locally from second-order. However this situation arises at only a few mesh points and 

the global accuracy is not impacted. Note that a first-order approximation is given by: 
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The singularity with respect to χ remains in this case as well. However, positivity 

of the off-diagonal coefficients is maintained in the first-order case while the second-

order form will lead to a negative coefficient ji ,2−α . In practice this negatively impacts the 

convergence of the iterative solver used for solving the discrete system of equations; to 

maintain robustness a first-order treatment for the diffusion term is employed at the 

interfacial points in the present calculations.  While this practice lowers the order of 

approximation in the lower-dimensional set of interfacial cells, global second-order 

accuracy is still maintained as shown in the results.    
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Convection and divergence terms ( xu ∂∂ )( ψ and x∂∂ψ ) 

with Dirichlet conditions on the boundary. 

As for the second-derivative terms above, the discretization scheme for xu ∂∂ )( ψ  

consists of contributions from points in the same phase. The differential operator for the 

convection term is obtained in the following form: 
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Note that, as in (Udaykumar et al. 2002b), to avoid pressure-velocity decoupling 

in the current collocated variable arrangement cell face velocities are also stored along 

with cell center velocities(Zang et al. 1994). These cell-face velocities are used in 

evaluating the convective fluxes in Eq 2.34. By employing Taylor expansions for each of 

the ',' jiψ  in Eq 2.34 about point (i,j,k) and demanding an O( 2x∆ ) scheme the following 

expressions are obtained for the constants: 
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The general form and the coefficients for a first-order scheme in this case are: 
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The above general form can be rewritten as follows:  
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Since the convection terms are explicitly computed the second-order 

approximation can be employed except at those points where two opposing interfaces 
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approach to within a mesh point. In this exigency the first-order approximation needs to 

be adopted. 

22 x∂∂ ψ  operator with a Neumann boundary condition on 

the embedded boundary. 

This situation arises in the pressure Poisson equation for points that adjoin the 

embedded boundary. The stability and accuracy of the flow solver depends critically on 

the construction of this term.  In fact, devising a discrete form for the Laplace operator 

with a Neumann condition on the immersed interface proved to be the key to the 

robustness of the overall flow solver. 

From Figure(c) it is evident that when discretizing the above operator the 

boundary condition that will apply at point I+x is 0=∂∂ nψ . It is not immediately clear 

how such a Neumann condition can be incorporated into the discrete form of the above 

operator. Apart from being crucial to the robustness of the overall method, the treatment 

of the pressure boundary condition is a key distinguishing feature of the finite-difference 

approach adopted here as opposed to the finite-volume approach detailed in previous 

work (Udaykumar et al. 2002b). In the latter a weak form of the pressure Poisson 

equation was employed, i.e.  

∫ ∫
∆
⋅

=
∂
∂ dS

t
nudS

n
p rr *   2.42 

The interfacial cells were reshaped into irregular shaped cells where one of the 

cell edges coincided with the interface. Due to the weak form above the Neumann 

boundary condition for pressure is easily incorporated by setting the interfacial 

contribution to zero (i.e. 0=∂∂ np ) implicitly in the discrete pressure Poisson equation. 

However, since the strong form is employed in the present finite-difference scheme on a 

Cartesian grid, implicit imposition of a Neumann boundary condition on the pressure is 

not straight forward. The section below presents two different (an implicit and an 
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explicit) formulations to impose the interfacial condition. The implicit approach is chosen 

over the explicit approach due its superior efficiency while using iterative solvers.  

 

Explicit approach for 22 x∂∂ ψ  operator with a Neumann 

boundary condition on the embedded boundary. 

 

This explicit method is a robust, albeit a first-order implementation of the 

Neumann boundary condition. Recall the Laplace operator assembled for the Dirichlet 

boundary condition case (i.e. Eq 2.25) 

jijijijijijiIIx ,2,2,1,1,,2

2

−−−− +++=
∂
∂ ψαψαψαψαψ  2.43 

 

The above operator is also applicable in the current scenario, except that the interfacial 

pressure Iψ  in this case is found using the Neumann condition as follows. Looking at 

Figure(d) the interface pressure can be estimated by extending a normal from point I and 

placing two points distant ∆x apart along the normal. The locations of the points Ix,  I1x 

and I2x on the probe are therefore,  

ixxx IjiI x

rrr
∆+= ,   2.44 

xNxx
xxx III ∆+=

rrr
1   2.45 

xNxx
xxx III ∆+=

rrr 22   2.46 

Similarly: 

jyxx IjiI y

rrr
∆+= ,   2.47 

xNxx
yyy III ∆+=

rrr
1   2.48 

xNxx
yyy III ∆+=

rrr 22   2.49 
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Fitting a quadratic to the pressure field along the normal erected and demanding 

that 0=∂∂ nψ at point I, one obtains: 

yxyxyx III /// 21 3
1

3
4 ψψψ −=   2.50 

In the above expressions the normal vector appears in several places. The normal 

at any point is easily obtained by bilinear interpolation from the values at the grid points. 

Note that the values of ψ at the points I1x/y and I2x/y are required in the above equation. 

These are calculated by bilinear interpolation from the surrounding mesh points. One 

issue that arises while evaluating the ψI1x/y and ψI2x/y is that for certain interface 

orientations the bilinear interpolation may involve a point that lies in the solid. Thus, a 

single layer of ghost values of pressure are computed and stored at the points in the 

interfacial points in the solid.  The ghost values of pressure are also obtained with the 

condition that the Neumann condition applies at the interface. Thus, a normal to the 

interface is erected from the ghost point as shown in Figure(d) where the locations of the 

points on the normal are: 

GGGG Nxx φ
rrr

+=1   2.51 

xNxx GGG ∆+=
rrr

12   2.52  

The normal at point G is obtained from the level-set field using Eq 2.19. Fitting a 

quadratic to the pressure field along the normal and demanding that 0=∂∂ nψ  be 

satisfied at the point G1 (i.e. on the solid boundary) leads to: 

2
121

2
2

2
12211

2
21

2
2

dddd
dddd GGG

G
+−

+−
=

ψψψ
ψ   2.53 

where, 

xdd GlGl ∆+== )(  and )( 21 φφ   2.54 

The interfacial value of the pressure ψG1 is obtained from Eq 2.53 above and the 

value at G2 is obtained by bilinear interpolation. Note that the values of the ghost 
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pressure and the interfacial pressure become inter-dependent through Eq 2.51 and Eq. 

2.53 The determination of the interfacial pressure and ghost pressure are embedded 

within an iterative solver for the pressure. The (k+1)th iteration of the solver can be 

expressed in matrix form as follows:  

k
IP

k
P bbA +=+1ψ   2.55 

where, PA is the coefficient matrix assembled from the Laplace operator for bulk and 

interfacial cells (Eq. 2.21 and Eq. 2.43), Pb is the source term for pressure (Eq. 2.13), 
1+kψ is the solution at (k+1)th iteration and )( k

II
k
Ib ψα=  is the interfacial term in Eq. 2.43 

calculated from the solution at kth iteration. The interfacial pressure and ghost pressure 

are embedded in k
Ib . During the iterative process this term is updated every iteration till 

convergence is attained. A converged solution also effectively imposes Neumann 

condition on the embedded interface.  

 

This explicit scheme has been tested and applied to an entire range of Reynolds numbers 

and flow problems. However, there are certain drawbacks in the scheme that make it 

computationally unattractive. Firstly, the re-evaluation of the term k
Ib  in Eq. 2.54 incurs 

extra computations during the iteration process. These additional calculations could be 

significant for large systems, especially in 3D. Secondly, altering the right hand side of a 

matrix system introduces new error in the residual, thereby, partly nullifying the 

reduction in residual due to the solver. This effect is especially significant in the initial 

stages of the iterative process. A comparison of convergence behavior of this approach 

versus an implicit approach is presented in the following section.  

 

Implicit approach for 22 x∂∂ ψ  operator with a Neumann 

boundary condition on the embedded boundary. 
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An implicit scheme is devised to incorporate the Neumann boundary condition 

into the discrete Laplace operator by expanding the stencil beyond the immediate 

neighbors. This procedure also uses Eq 2.24 as the starting point. 

jijijijijijiIIx ,2,2,1,1,,2

2

−−−− +++=
∂
∂ ψαψαψαψαψ  2.56 

In the above equation, the interface pressure, Iψ is expressed in terms of other 

computational cells in the vicinity of (i,j). The implicit formulation for the linear operator 

in Eq. 2.55 is illustrated for the point P in the configuration shown in Figure 2.3.  

Looking at Figure 2.3 the interface pressure Iψ  at Ix can be estimated by extending a 

normal from point Ix and placing two points I1x and I2x along the normal. Unlike, the 

explicit method, the chosen two points are the intersections of the normal at Ix with lines 

joining cell centers. The location of the points I1x and I2x in the Figure 2.3 can be 

calculated as the intersection of the normal from Ix with lines N-NE and N-NN 

respectively. Assuming a quadratic pressure profile between the points Ix, I1x, I2x with 

zero normal gradient at the interface, the interfacial pressure can be expressed as, 

2
1

2
2

2
12

2
2

dd
dd

xx

x

IIi
I −

−
=

ψψ
ψ   2.57 

where, d1 and d2 are the distances of the points I1x and I2x from Ix respectively. Since 

points I1x and I2x lie on cell-center lines, their pressure values can be interpolated from 

the cell-centers straddling them. Let ),()1,(1 NENIN x=χ  and ),()2,(2 NNNIN x=χ  

(operator (A, B) representing the distance between points A and B) be the interpolation 

weights for the straddling points for I1x and I2x. The pressure values at I1x and I2x can be 

expressed as: 

NENI x
ψχψχψ 111 )1( +−=   2.58 

NNNI x
ψχψχψ 222 )1( +−=   2.59 
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Using Eq. 2.58 and Eq 2.59 and substituting Eq 2.57 in Eq. 2.56 Laplace operator can be 

rewritten as :  

jijijijijijijijijijijijix ,1,12,2,1,1,,2,2,1,1,,2

2

++++++−−−− +++++=
∂
∂ ψαψαψαψαψαψαψ  2.60 

The last three terms in the above expression (corresponding to N, NN and NE in Figure 

2.3) are the consequence of the implicit imposition of the interfacial boundary condition. 

This operator when assembled for all the interfacial cells and when solved iteratively for 

the whole domain results in a converged solution that satisfies the interfacial boundary 

condition. 

 

The above procedure is applicable to any interfacial orientation. The additional 

points included in the expanded stencil vary based on the orientation of the interfacial 

normal. This scheme has also been implemented for three-dimensional configurations. In 

3D, the points I1x and I2x lie on planes connected by cell-centers in the vicinity of point 

(i,j). The 3D counterparts of Eq 2.58-2.59 involve bi-linear interpolation of the four 

points defining the intersecting planes (1-4 for I1x and 5-8 for I2x). 

1
4

1
443322111 =+++= ∑

=i
iI x

βψβψβψβψβψ   2.61 

1
8

5
887766552 =+++= ∑

=i
iI x

βψβψβψβψβψ  2.62 

There are several advantages of adopting the implicit approach over the explicit 

scheme described earlier. a) The implicit scheme generates a linear system with a fixed 

coefficient matrix and a constant right-hand side, thereby bypasses the issue of re-

calculating the interfacial contribution during each step of the iterative process. b) In the 

explicit method, as the high frequency errors are being reduced by the smoother, the 

contribution due the interfacial term can introduce a significant addition to the net 

residual of the matrix system, thereby reducing the rate of convergence. However, in 
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using the implicit method, given the matrix system, the rate of reduction of the high 

frequency errors is nearly unaltered as the solution attains convergence. c) Even though 

the implicit scheme extends the stencil beyond the standard 5-point stencil (7-point in 

3D) the coefficient matrix is still predominantly sparse, enabling the use of fast Krylov 

based solvers. Moreover, the computational gains due to solver efficiency justify the use 

of implicit formulation of Laplace operator near the interface. A comparison of the 

convergence histories of the implicit and explicit schemes shown in Figure 2.5 further 

strengthen this observation. The convergence histories shown in the Figure 2.5 are for a 

two-dimensional channel flow with imposed negative pressure gradient across the open 

ends of the channel. The channel walls are represented by solid interfaces with Neumann 

boundary condition on the pressure. The Neumann condition is incorporated in the 

solution of pressure Poisson equation using both the explicit and implicit schemes. The 

iterative solver used in this context is Algebraic Multigrid with four levels of multi-grid. 

The impact of using an explicit scheme is apparent from the convergence behavior of 

AMG. The slope of the convergence curve in semi-log plot is reduced drastically in case 

of an explicit scheme. The implicit scheme reduces the residuals to the order 10-10 while 

the explicit scheme nearly stagnates at 10-3.  

Moving boundaries 

 

In Eulerian sharp interface methods, when the solid boundary moves across a grid 

point, the state of the point can change from liquid to solid or vice versa. Different 

approaches have been employed to handle this situation. In Ghost-Fluid type methods 

and immersed boundary methods (Fadlun et al. 2000; Kim et al. 2001; Liu et al. 2000) or 

fictitious domain methods (Glowinski et al. 2001) flowfields are computed within as well 

as outside the immersed solid object. Thus, when the boundary crosses over a grid point, 

changing the state from solid to fluid, the newly emerged fluid point simply takes on the 
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flowfield variables that were available at that point in the previous time step. In the sharp 

interface method (Udaykumar et al. 2002b) as well as immersed interface method 

(Leveque and Li 1994; Leveque and Li 1995) where the flow is computed separately in 

each subdomain (fluid and solid) separated by the interface and no ghost flowfield exists 

in the solid, a scheme must be devised to obtain the flowfield variables at the newly 

emerged fluid point. Note that the converse case, i.e.  the emergence of a grid point that 

was in the fluid phase into the solid phase presents no issues since the flowfield is not 

computed in the solid phase. 

 

A newly emerged fluid grid point is defined by the condition 0)()( ,
1

, <+ n
jil

n
jil φφ . 

Since the point was previously in the solid phase ( 0)( , <n
jilφ ) it had no history in the fluid 

phase ( 0)( 1
, >+n

jilφ ), i.e. nur  (as also nξ ) does not exist in the fluid phase for such a point. 

Therefore, these points are to be evolved to time level n+1 in a special fashion. Note that 

since the pressure Poisson equation does not have a time-dependent term the pressure in 

such a cell can be evaluated as usual once a *ur  value is available after solving the 

momentum equation. The method to obtain nur (and nξ ) for such points follows along the 

lines detailed in (Udaykumar et al. 2002b; Udaykumar et al. 2001) and is analogous to 

the approach taken in moving grid formulations when a fresh grid point is inserted 

following mesh refinement. The value at such points is obtained by interpolation from the 

known values in the surrounding cells and on the moving boundary (where the boundary 

conditions are specified). For the particular time step when a grid point changes from 

solid to fluid phase, the value of nur  there is found using a linear interpolation operator 

spanning points in the fluid and on the interface. The interpolation points that are picked 

depend on the orientation of the interface in the cell as illustrated in Figure 2.4. For the 

particular case in Figure 2.4, the value at the freshly cleared cell (i,j) is calculated as 

)1()( 1,, y
n
I

n
jiy

n
ji y −+− ++=

−
χψψχψ , where χ-y is the distance between the grid point (i,j) 

and the interfacial point I-y. The interpolation points are chosen depending on the 
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direction of the normal vector at I-y ( )),( yx nnn =
r  and the ratio ny/nx,. For instance, in the 

above expression for the case in Figure 2.4, points I-y and (i,j+1) are chosen since (ny>0 

& ny>nx).Consistent with the difference scheme in the interface-adjacent grid points the 

treatment at the newly emerged fluid points is first-order accurate. Note that this 

procedure is equivalent, in analogy with purely Lagrangian (moving grid) methods, to 

interpolating the value of variables to a newly inserted point after mesh refinement from 

values at the old mesh points (i.e. before refinement). In diffuse interface Eulerian 

methods (where interfaces may be captured using VOF, level-set, phase field etc.), where 

the interfacial forces are spread over the mesh (Anderson et al. 2000; Brackbill et al. 

1992) this issue of cross-over does not arise since there is no clear-cut interface location 

and all properties are taken to vary smoothly over a few mesh points.  

Iterative Solvers for the Sparse Linear Systems 

 

In any CFD tool, most of the computational time is spent in the solving the linear 

matrix systems resulting from the momentum equation and more importantly the pressure 

Poisson equation. Typically the discrete finite-difference operators lead to sparse linear 

systems for any multi-dimensional problem. A variety of iterative solvers such as Point-

Jacobi, Multigrid methods such as AMG, Krylov subspace based methods such as 

Conjugate Gradients/ GMRES etc are available.  

 

Among the above, AMG has been implemented and has been successfully used 

for a variety of moving boundary problems in ELAFINT3D framework. However, the 

following issues(explained best in the context of a channel flow) have prompted a review 

of the various solvers to identify the best solver for the current class of problems. 

Consider a 2D channel flow with a prescribed time-varying pressure gradient across the 

channel. In this scenario, the varying inlet pressure has to be communicated through out 
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the channel by solving the elliptic pressure Poisson equation. The newly solved pressure 

in general reflects the change in the inlet pressure. However, with AMG, registering of 

even small variations in the boundary conditions takes large number of iterations in 

comparison to fixed boundary condition. Moreover, even with the implementation of 

implicit scheme for the interfacial Laplace operator, the convergence of AMG could do 

better. In this view, a comparison of the point solver, line solver, AMG and 

BiCGSTAB(l) has been performed for a set of typical fluid flow problems. The details of 

the BiCGSTAB(l) solver used in this are presented in papers by Sleijpen and van der 

Vorst. Though not described in this thesis, the convergence behavior of GMRES has been 

found to be slower than BiCGSTAB(l). 

 

The cases chosen for this study are flow in a 2D channel and flow around a 

stationary cylinder. Figure 2.6 shows the convergence behavior for all the tested solvers 

for flow through a slanted channel with prescribed pressure gradients. As can be 

observed, the BiCGSTAB(l) converges faster than all the other solvers for both implicit 

and explicit schemes on the interface. Figure 2.6 compares the convergence behavior of 

all the solvers for flow around a cylinder. This case also illustrates the performance of the 

implicit scheme for all possible orientations of the interface.  

 

Local Mesh Refinement 

 

Many of the fluid flow problems entail fascinating physics in disparate length and 

time scales. In order to simulate these multi-scale problems, one requires appropriate 

resolution in spatial and temporal domains. As described previously, the ELAFINT3D 

framework relies on fixed Cartesian meshes to represent the flow field. Any embedded 

entity cuts across the fixed mesh as it interacts and traverses in the fluid medium. In the 
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context of the Cartesian grid methods, enhancing the spatial resolution in a certain region 

of the domain will result in increased resolution in other parts of the domain even if not 

required. This scheme of increasing the spatial resolution results in enormous 

computational cost and memory requirements for the simulation. This draw back of the 

fixed grid methods can be surpassed by adopting an adaptive mesh refinement strategy. 

The current ELAFINT3D framework features a quad/oct-tree based Local Mesh 

Refinement Algorithm to adaptively generate spatial resolution based on the flow 

features. 

 

The critical features of the LMR algorithm are a) Refinement Criteria b) Mesh 

Data Structure and c) Discretization scheme for the governing equations. The above 

aspects as implemented in the current framework will be discussed. 

 

Refinement Criteria 

 

The selection of refinement criterion is mostly application specific. However, the 

problems of current interest being moving boundary problems, the criteria for refinement 

are broadly based on a) the proximity to any embedded entity and b) the gradients of 

solution variables(e.g vorticity). The refinement criteria used in the current work are: a) 

uniform refinement upto a certain distance from the interface and b) a solution based 

refinement based on the following equations 

 ε
φ
φ

>
∇

max
h

 2.63 
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 ε
ψ
ψα

ψ
ψα >⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ∇∇ 2

0

2

0
,max hh cg  2.64 

where ε  is the refinement criterion and )(~ xOh ∆  

 

Data Structures 

 

The LMR algorithm relies on quad-tree (oct-tree in 3D) data structures to store 

the refined meshes. This strategy provides an easy way to perform coarsening and 

refinement operations and also enables easy access to the immediate neighbors. In the 

present framework, the information pertaining to each cell is stored in a used defined data 

structure. This data structure comprises of the location of the cell, its position in the tree 

hierarchy and the physical variables (e.g velocity, pressure etc) associated with it. Based 

on the inputs, the flow domain is initially represented by a base mesh. The base mesh is 

typically coarse in comparison to the eventually refined mesh. Each cell of the base mesh 

is at the top of a tree. Based on the refinement criteria, each of the base meshes is either 

refined or not refined. If a certain cell (say A) is decided to be refined, the child cells 

(A1-A4) are created for this parent cell (A). Each of these child cells is assigned indices 

that indicate their position in the tree hierarchy of the cell A. Also pointers to the child 

and parent cells are assigned to each of the cells. Using logical operations, the neighbors 

of the child cells can be determined and linked using pointers. To avoid implentational 

complexities, especially in discretization schemes, the refined grid is smoothed to assure 

that no two neighboring cells differ by more than one level. 
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Discretization 

 

The finite-difference schemes for the governing equations introduced earlier are 

based on meshes with uniform refinement. The challenge in devising a discretization 

scheme is that of mass conservation across the mesh-interfaces. In the current 

implementation of LMR, a mixed finite-difference and finite-volume scheme is used for 

discretization. The computational domain can be classified into three distinct categories. 

The “normal cells” which are the bulk cells with away from the refinement boundaries, 

the “ref-boundary cells” which are adjacent to the boundary between different levels of 

refinement and the “interfacial cells” which are right next to the interface. For the 

“normal” cells, the finite-difference and finite-volume schemes result in the same discrete 

form. For the “interfacial cells”, the finite-difference schemes introduced in previous 

sections are applicable as the region up to a certain distance from the interface is refined 

to the same level. For the “ref-boundary cells”, special attention is required in devising 

discretization schemes that ensure flux conservation across the mesh interfaces. A finite-

volume method is implemented in the current framework for the “ref-boundary cells”.  

 

As described in earlier, a smoothing of the refined meshes in performed to ensure 

that any pair of neighboring cells differ by utmost one level of refinement. Based on the 

smoothing, there are two possible configurations at the mesh-interfaces. The neighboring 

cell is a) one level higher or b) one level lower than the current cell.  

 

Neighbor cell higher than the current cell 

 

The discretization of the diffusion operation is shown in Eq. (2.62). f represents 

the flux across the side. The ‘north’ cell ‘N’ is a divided cell while the current cell ‘P’ is 
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undivided.  
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The flux from each of the north faces into the current cell is given by Eqn(2.63). 

'1P
φ and '2P

φ are ghost cells, which are interpolated from the surrounding cells by bi-linear 

weighted averaging. Finally, the stencil for Pφ
2∇  includes all the surrounding 

neighboring cells as shown in Eqn(2.64).  
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Neighbor level lower than current cell 

 

This is the case where the neighboring cell is a level lower than the current cell 

under consideration. The discretization of the diffusion operator is shown in Eqn(2.65). 

This time the cells to the east and south, represented by ‘E’ and ‘S’ respectively are a 

level lower than the current cell ‘P’. The flux from the east and south faces are given by 

equation(2.65). 
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where '' SE and φφ  are ghost points obtained by interpolating from surrounding 

cells as shown in equation 58(b).  
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Finally the diffusion operator is obtained as a function of all the surrounding cells 

as 

 ),,,,,,(2
SWNWSNWEPP f φφφφφφφφ =∇  2.70 

Results and Discussion 

Finite-difference and Finite-volume approximations 

 

The accuracy of the current finite-difference and level-set combination (FD+LS) 

is estimated and compared to that of a finite-volume method that used marker tracking 

(FV+MT)(Udaykumar et al. 2002b). The main differences between the present FD+LS 

method and the FV+MT method lie in the manner in which the sharp-interface treatments 

are constructed in the interface-adjacent grid points. In the FV+MT method a cut-cell 

technique was used to reshape the control volumes at such points and the weak form of 
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the governing equations was discretized. The convective and diffusive fluxes at control 

volume faces were obtained from a nominally second-order accurate linear-quadratic 

shape-function that incorporated points additional to the usual 5-point (in 2D) stencil in 

the discretization at interface-adjacent points. The present FD+LS method operates with 

the strong form of the governing equations and the diffusion term is approximated to 

first-order accuracy at the interfacial points. However, the present FD+LS scheme is far 

easier to implement and makes extension to 3-dimensions straightforward.  

 

The solutions to scalar diffusion and scalar convection-diffusion problems are 

chosen as a basis for comparison in this section. The computational setup for all of these 

cases is a circular cylinder of radius 0.25 placed at the center of a 1 x 1 domain as shown 

in  Figure (a). For the diffusion problem, Dirichlet boundary conditions are applied at the 

cylinder surface (ξ=0),the left and bottom boundaries of the domain (ξ=1) and the right 

and top boundaries(ξ=0). The system is allowed to reach steady state and the L2-norm of 

error in temperature over the whole domain is calculated. Both FD+LS and FV+MT 

methods are used to solve this problem. Variation of the L2 norm with grid spacing using 

the two methods is compared in  Figure (b) by taking the solution on the finest mesh 

(200x200) to be the exact solution. The figure shows that the present FD+LS solution 

compares well with the previous FV+MT method in terms of the order of accuracy. Both 

methods provide globally second-order accurate solutions although the errors in the finite 

difference case are somewhat higher in magnitude than the FV+MT case.  

 

The scalar convection-diffusion equation is solved next in the same setup as for 

the above case but a uniform flow (u = 1.0, v= 1.0) is imposed everywhere in the domain. 

As in the previous case, both FD+LS and FV+MT methods are used to solve the 

convection-diffusion equation. The variation of L2 error norms with grid spacing for the 

solution at steady state for each of these methods is plotted in  Figure (c). The slopes of 
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the lines indicate that both methods yield second-order accurate results. These accuracy 

studies indicate that the present FD+LS method compares well with the finite-volume 

sharp interface method while carrying the advantage of simplicity of construction. 

Benchmarking the Flow Solver 

Two-dimensional flows 

 

Case I. Flow past a stationary circular cylinder  This study validates the 

current FD+LS method for flow around immersed stationary boundaries over a range of 

Reynolds numbers by simulating steady and unsteady flows past a circular cylinder 

immersed in an unbounded flow.  These 2D cases are used to directly compare the 

current FD+LS technique with experimental data as well as benchmarked numerical 

results, including the previous FV+MT technique (Udaykumar et al. 2002b). The flow 

around a cylinder for Reynolds number (Re) = 40, 80, and 300 are simulated and the 

results are compared to various numerical and experimental results. A large domain size 

of 30 x 30 with computational mesh of 452x452 has been used to minimize the boundary 

effects and to resolve the boundary layer on the embedded solid. The grid is fine and 

uniform in the vicinity of the immersed boundary and is stretched linearly away from it. 

The boundary conditions on the top, bottom and the left boundaries correspond to 

potential flow past a cylinder and the right boundary is specified as an outlet.  

 

For Re = 40 the flow develops to a steady-state with a steady recirculation zone 

behind the cylinder as shown in Figure (a). The length of the recirculation and the drag 

coefficient, CD = FD/(1/2)ρUo
2D (FD being the drag force), are computed for comparison 

with benchmark results. Table 2.1 shows that the results from the current FD+LS method 

compare well with other experimental and numerical solutions. At Re = 80, the wake of 

the cylinder develops into the classic Karman vortex street as shown in Figure (b). The 
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steady vortex shedding is illustrated from the plot of drag and lift coefficients shown in 

Figure (c). The mean drag coefficient computed is 1.37 which is in agreement with the 

previous FV+MT results. The Strouhal number (St = fD/Uo, where f is the shedding 

frequency) for the vortex shedding is obtained to be 0.15. Figure (a) and 2.9(b) show the 

streamlines and pressure contours at an instant of time for Re = 300. The variation of drag 

and lift coefficients are shown in Figure (c). The values of mean drag coefficient CD=1.28 

and St = 0.21 agree well with the experimental value of (Wieselsberger 1922) as well as 

previous FV+MT results. Thus, for flows with embedded boundaries the current FD+LS 

method yields results that are indistinguishable from the FV+MT calculations. 

 

Case II. Flow past an oscillating cylinder To validate the capability of handling 

flows past moving boundaries the flow past a transversely oscillating cylinder and the 

classical “lock-on” phenomenon for vortex shedding is examined. Flow past a cylinder at 

Re = 200 undergoing sinusoidal transverse oscillation is simulated for a range of 

oscillation frequencies and the results are compared to the experimental results 

(Koopmann 1967). 

 

The cylinder center (xo,yo) is located at (8, 10) relative to the left bottom corner in 

a 20x20 domain with 400x400 mesh points. A uniform flow Uo is prescribed on the left, 

top and bottom boundaries and the right boundary has an outlet boundary condition. A 

sinusoidal motion of the form xc(t) = xo, yc(t) = yo + Asin(2πfft) is imposed on the 

cylinder, where t is the non-dimensional time, A is the amplitude of oscillation, ff is the 

frequency of the imposed oscillation.  

 

The unsteady flow past a stationary cylinder at Re = 200 is used as a starting 

solution before proceeding to oscillate the cylinder. A vortex-shedding frequency of fo = 

0.198 and drag coefficient of CD = 1.37 are calculated for this flow. With the solution 
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from the above simulation as an initial condition, flow past an oscillating cylinder for a 

range of oscillation amplitudes and frequencies has been simulated. The sets of 

parameters chosen to study the lock-on phenomenon are: a) A= 0.1, ff = {0.15, 

0.17,0.19,0.2,0.21,0.23,0.25} and b) A = 0.2, ff = {0.15, 0.17,0.19,0.21}. Each of the 

simulations was performed for about 200 non-dimensional time units to ensure that the 

flow has attained a quasi-steady state. Shown in Figure (a) are the vortex shedding 

patterns behind a cylinder oscillating with amplitude of 0.1 and frequency of 0.21. The 

non-dimensional shedding frequency (Strouhal number) is calculated by evaluating the 

periodicity of the velocity fluctuations in the near wake region. The variation of velocity 

at a probe point in the wake for the above mentioned case is shown in Figure (b). The 

deduced shedding frequency from this plot is 0.21, which implies that the vortices shed 

by the cylinder are “locked-on” to the cylinder oscillation. Based on experiments, 

Koopmann (1967) obtained a curve in amplitude vs frequency parameter space that 

demarcates the lock-on region from non-lock-on regions. The results from the present 

study are benchmarked by verifying the lock-on prediction against Koopmann’s 

experimental curve. The current results are compared with the experimental curve in 

Figure (c) and show good agreement. The current simulations predict lock-on at 

frequencies close to the natural frequency. The points where lock-on was observed 

(filled-squares) fall within the experimental lock-on regime (region between the solid 

lines in Figure 2.10(c)) thereby validating the current technique. 

Three - dimensional flows 

 

Case I. Flow around a stationary sphere Simulation of flow around a stationary 

sphere is used to validate the numerical method for problems involving three-dimensional 

fixed immersed boundaries. Benchmark numerical solutions and experimental data are 

used to validate the solutions. There are distinct regimes in the flow around a sphere that 
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can be identified based on the Reynolds number of the imposed flow(Johnson and Patel 

1999). These include the transition from steady axisymmetric to non-axisymmetric flow 

(at Re ≅ 210), followed by transition from steady to unsteady flow (at Re≅ 270). Laminar 

flows up to Re = 300 are simulated and compared to benchmark data. The transition 

points as well as quantitative measures such as recirculation length, drag coefficient and 

Strouhal number (for unsteady flows) are used to validate the current method. A 

15x15x15 domain with the sphere centered at (x=5, y=7.5, z=7.5) is used for the 

simulations in the current study. A computational grid consisting of 130 x 110 x 110 

mesh points with fine and uniform grid in the vicinity of the sphere and linearly stretched 

mesh away from the sphere is used. Computational resources limit the domain and mesh 

size in 3D transient calculations. The domain and mesh size used are deemed sufficient 

for the present study based on the agreement between the present results and benchmarks. 

The boundary conditions on all the boundaries correspond to potential flow past a sphere. 

 

Steady Axisymmetric Flow: The flow around a sphere is steady and separated for 

Reynolds numbers in the range 20-210 (Johnson and Patel 1999).The flows for Re 

starting from 50 are simulated. Figure (a-d) illustrate the streamlines, through the 

symmetry plane (z =7.5) plane for Reynolds numbers of 50,100,150 and 210 respectively. 

As expected, the flow has a steady, axisymmetric wake in all these cases. For these 

Reynolds numbers, the quantitative data, viz. length of the recirculation bubble and the 

drag coefficient tabulated in Table 2.2 compare well with the published data in the 

literature.  

 

Steady non-axisymmetric flow: It has been experimentally established (Magarvey 

and Bishop 1961) that a non-axisymmetric steady flow regime prevails in the range 

210<Re< 270. Numerical results (Johnson and Patel 1999) indicate the value for onset of 

the asymmetry to be close to Re= 215. The onset of this flow regime has been verified by 
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simulating flows for Re = 210 and Re = 215. The plots in Figure (d-e) show the 

streamlines and the pressure contours on z = 7.5 plane for a Re = 210 and Re = 215 

respectively. At Re=215 the flow field indicates an incipient axial asymmetry which is 

highlighted by the circled region in Figure (e). This establishes the transition to 

asymmetric flow in this Re interval.  

 

Unsteady flow: The plots in Figure 2.12(a-c) show the flow features on the z = 7.5 

plane at Re = 270. As can be observed from the vorticity contours in this graph, the flow 

is still steady in this case. Since the transition to unsteady flow is known to occur in 

270<Re<300 range (Magarvey and Bishop 1961; Tomboulides et al. 1993), flows are 

computed within this range by varying Re in intervals of 10. A steady solution from Re = 

270 is employed as an initial condition for all the test simulations. The vorticity contours 

on various planes shown, for Re=280, in Figure (d-f) reflect the unsteadiness in the flow 

at that Reynolds number. It can also be observed that the vorticity patterns are similar to 

those at Re=300(shown in Figure ) where the flow is truly unsteady. 

 

Calculations for Re = 300 were carried out to observe the well-established vortex 

shedding phenomenon and also to obtain quantitative data for comparison with 

benchmarks. The vorticity contours on the x-y and x-z planes are shown in Figure . 

Several techniques can be used for identifying and extracting vortical structures in 3D. 

The ∆-method proposed by (Chong et al. 1990) has been used for visualizing the vortical 

structures in the present investigation. The above method defines the vortex core as a 

region with closed or spiral local streamline pattern. Such a region is identified by 

complex eigenvalues of velocity gradient tensor ∇u. The iso-surfaces of complex 

eigenvalues of ∇u are plotted in Figure . The structure of the vortices shed from the 

sphere resemble the numerical results in (Johnson and Patel 1999). For quantitative 

comparison, the time variation of lift and drag coefficients are plotted in Figure . The 
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calculated average drag coefficient of 0.621 as well as the Strouhal number of 0.133 

compare well with results of (Johnson and Patel 1999) (Table 2.2).  

 

Case II. Flow around a moving sphere Flow around a sphere undergoing 

stream-wise oscillations in a stably stratified fluid has been studied to validate the current 

numerical method for three-dimensional flows involving moving embedded objects. The 

computational setup is the same as in the stationary sphere cases presented in the 

previous section. The sphere undergoes forced oscillation in the stream-wise direction, 

tfUtU fcos)( 1= , where U1 and ff  are the amplitude and frequency of oscillation. The 

governing equations for the flow are the same as discussed in §2.2. The fluid is stably 

stratified with an undisturbed linear density gradient in the z-

direction, ( )( )Hzz HB 212)( 2 −∆+= ρρρ , where 2Hρ is the density at the mid-depth and 

ρ∆ is the density difference between the bottom(z=0) and top (z=H) planes of the 

domain. The terms involving density variations assume significance due to stratification. 

The density field is computed using incompressibility condition. The presence of the 

oscillating sphere introduces additional non-dimensional quantities, viz., the Keulegan-

Carpenter number (KC=U1/ffD), which characterizes the non-dimensional amplitude of 

the oscillations, and normalized forcing frequency (Sf = ffD/(2πU0)).  

 

Stratified flows display a range of interesting phenomena usually not found in the 

homogeneous flow situations. For flow around a sphere, (Lin et al. 1992) have shown 

experimentally that for sufficiently small Fr or strong stratification, the incoming flow 

prefers to go around the sphere rather than over it. For Fr < 0.2, the flow is quasi-two-

dimensional. The stratification suppresses the formation of hairpin vortices at higher 

Reynolds numbers. For sufficiently large Re, vortex shedding in the lee of the sphere 

resembles the classic Karman vortex street observed for uniform flow past a circular 

cylinder and the flow becomes nearly two-dimensional in -0.5<z/D<0.5. The wide range 
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of experimental results reported by (Lin et al. 1994; Lin et al. 1992) for these parameter 

values serve for validation. The parameter values chosen for the current study are Re = 

190 and Fr = 0.07. (Lin et al. 1994; Lin et al. 1992) created a flow regime diagram in KC-

Sf  parameter space. The test points chosen for the current study are labeled A(KC=0.03, 

Sf =0.35) and B(KC=0.2, Sf =0.35).  Experimental results indicate that test points A and 

B fall into the natural vortex shedding and lock-on alternate single vortex regimes 

respectively. The simulations of flow around an oscillating sphere are performed to test 

of the flow behavior predicted agrees with the experimental flow regime diagram. 

 

The flow around a stationary sphere at Re = 190 and Fr = 0.07 is first simulated 

and the solution is used as an initial condition for the moving sphere cases. The vortex 

structures in the lee of the sphere resemble the classical Karman vortex street observed in 

the case of a circular cylinder, as seen from the vorticity contours on the central z = 7.5 

plane shown in  Figure 2.16(a). The contours of the z-component of velocity and the 

density on the z = 7.5 plane are plotted in  Figure 2.16(b) & (c). The small variations in 

the plane in these plots illustrates the essentially quasi-two dimensional nature of this 

flow. A Strouhal number of 0.2 calculated from the periodicity of the velocity for a probe 

point in the lee of the sphere (Figure ) matches with experimental value reported in the 

literature (Lin et al. 1992).  

 

The quasi-steady state solution of the above simulation is used as the starting 

condition for the oscillating sphere cases. For the first test point A, the amplitude of 

oscillation (KC = 0.03) is small, so that the far wake shedding behavior is similar to that 

of the stationary case. The Strouhal number, calculated to be 0.2, is unchanged from the 

natural shedding frequency of the stationary sphere. The flow being similar to the 

stationary case, this flow regime is classified as being in the “natural vortex shedding” 

regime. 
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For test point B, at a higher KC of 0.2, z-vorticity contours are plotted in Figure . 

However, the vortical structures are better visualized using the ∆-method (as described in 

the previously) and plotted in Figure 2.1. The cylindrical vortices apparent in the x-y 

view shown in Figure 2.1(b) illustrate that the vortex shedding is self similar in z-

direction. This demonstrates the quasi-two-dimensionality imposed due to stratification. 

The x-z view of vortex shedding shown in Figure 2.1(c) supports the above observation. 

The Strouhal number calculated from the probe velocity variation with time (Figure ) is 

0.35 which indicates that the shedding under these conditions locks on with the 

oscillation frequency of the sphere. Figure 2.1 also illustrates that the vortices are being 

shed alternately from either side of the sphere. Hence this flow regime is named “lock-on 

alternate single vortex” regime(Lin et al. 1994).  The flow structures viewed from the 

various perspectives are visually identical to those obtained in the experiments of(Lin et 

al. 1994). In summary, flow around an oscillating sphere in the presence of density 

stratification has been simulated for selected set of parameters KC & Sf. The flow 

regimes, vortical patterns and shedding frequencies predicted by the current technique for 

these test points are in agreement with the experimental results reported by Lin & 

coworkers and thereby provide validation for the present methodology for three-

dimensional flows involving moving immersed objects. 

Conclusions 

 

A numerical technique has been developed to solve incompressible fluid flows 

with immersed bodies in two and three dimensions. The salient features of the technique 

are a globally second-order accurate finite-difference discretization, a special treatment 

for the points lying adjacent to the immersed interface to capture the interface features in 

a sharp fashion and a level-set interface representation. The method does not employ 
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forcing functions in the governing equations. Instead the discretization is performed in 

such a way that the interface boundary conditions are incorporated into the discrete 

system of equations at the interface-adjacent grid points. In contrast to a previous finite-

volume sharp interface method the discretization procedure is quite simple and entails 

only a modest modification of a simple Cartesian grid flow solver. The simplicity is 

facilitated by the level-set description of the interface. An algebraic multigrid method has 

been adapted to include moving immersed solid-fluid and fluid-fluid interfaces in order to 

accelerate the solution of the discrete pressure Poisson equation. 

 

Several computational tests have been carried out to benchmark the method. The 

results from the accuracy studies, in which the present method is compared to a finite-

volume method, show that the order of accuracy is not compromised by the present 

finite-difference method. Validation for two dimensional flows around stationary and 

oscillating cylinders has been performed. The current results match well with the 

benchmark results. Flow around a stationary sphere has been simulated for a range of 

Reynolds numbers to validate the three-dimensional capability. Flow around an 

oscillating sphere has been computed as a demonstration of the ability to handle 3-

dimensional moving boundaries. The results in the 3-dimensional cases compare well 

with the established experimental and numerical results. 
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Figure 2.1 (a) Definition of the bulk (clear circles) and interfacial (filled circles) points. 
The interface is given by the 0-levelset. (b) Standard 5-point bulk point stencil 
in 2-dimensions. (c) The configuration of a typical interfacial point. (d) 
System for evaluating the Neumann boundary condition on the interface and 
evaluation of ghost pressures.  
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Figure 2.2 Some of the possible interfacial point situations in the 2-dimensional case. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Implicit method for Neumann boundary condition on the interface. 
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Figure 2.4 Illustration of the emergence of points from the solid to fluid phase when the 
sharp interface moves through the mesh
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Figure 2.5 Comparison of implicit and explicit schemes for Neumann boundary condition 
implementation 
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Figure 2.6 Comparison of various solvers for a channel flow.  
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 Figure 2.7 Comparison of error norms for finite-difference and finite-volume 
formulations.(a) Computational Setup (b) Diffusion problem (c) Convection-
Diffusion problem. 
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Figure 2.8(a) Axisymmetric wake behind the cylinder at Re = 40 (b) Streamlines past the 
cylinder at Re= 80 (c) Variation of Lift and Drag coefficients at Re = 80. 
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Figure 2.9 Unsteady flow around a circular cylinder at Re = 300. (a)Streamlines (b) 
Pressure contours and (c) Time history of lift and drag cofficients 
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Figure 2.10 Flow past an oscillating cylinder at Re =200 (a) Spanwise velocity contours 
(b) Fluctuations in spanwise velocity component at a point in the wake 
region.(c) Comparison of the present results with the Koopmann curve for 
lock-on region. The closed squares indicate lock-on frequencies and open 
square indicate no lock-on. 
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Figure 2.11 The axisymmetric streamlines past the sphere. (a) Re = 50, (b) Re = 100, (c) 
Re = 150, (d) Re=225, u,v vectors  on the x-y plane, (e) u,w vectors on x-z 
plane. 
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Figure 2.12 Vorticity contours for Re = 270 [ a) ωz on x-y plane  b) ωx on x-z plane c) ωy 
on x-z plane ] and Re = 280 [ d) ωz on x-y plane  e) ωx on x-z plane f) ωy on 
x-z plane] 
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Figure 2.13 Vorticity contours for Re = 300 [ a) ⎤z on x-y plane b) z ⎤x on x-z plane c) x ⎤y 

on x-z plane. 
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Figure 2.14 Vortical structures for flow at Re = 300. Oblique views 
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Figure 2.15 Time variation of lift and drag coefficients at Re = 300. 
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 Figure 2.16 Flow characteristics for Re = 190 and Fi = 0.07 KC = 0.0 Sf = 0.0 [ a) 
vorticity, ωz on x-y plane  b) w velocity countours on x-y plane c) density 
contours on x-y plane ]. 
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Figure 2.17 Probe velocity profile for points in the wake of the sphere [Re = 190 and Fi = 
0.07 KC = 0.0 Sf = 0.0] 
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Figure 2.18 Vorticity contours on z = 7.5 plane at different stages in the oscillation 
cycle.[Re = 190 and Fi = 0.07 KC = 0.2 Sf = 0.35] 
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Figure 2.19 Vortical structures for the flow around oscillating sphere flow at Re = 190 Fi 
= 0.07 KC = 0.2 Sf = 0.35 (a) Oblique view (b) x-y view (c) x-z view 
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Figure 2.20 Probe velocity profile for points in the wake of the sphere [Re = 190 and Fi = 
0.07 KC = 0.2 Sf = 0.35] 
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Re   → 40 80 300 

Study  ↓ CD L/D CD St CD St 

Tritton[7] 1.48 - 1.29 - - - 

Fornberg[8] 1.50 2.24 - - - - 

Mittal and Balachandar[9] - - - - 1.37 0.21 

Williamson[10] - - - 0.15 - 0.20 

Finite volume[3] 1.52 2.27 1.37 0.15 1.38 0.21 

Current 1.52 2.30 1.36 0.15 1.28 0.22 

Table 2.1Comparison with benchmark data for flow around cylinder 

Table 2.2 Comparison of results with benchmark data for flow around a sphere 

 

 

 

Re   → 50 100 150 215 300

Study  ↓ CD L/D CD L/D CD L/D CD L/D CD St 

Mittal[13] 1.57 0.44 1.09 0.87 - -   

Clift et al.[14] 1.57 - 1.09 - 0.89 - 0.74  

Johnson & Patel[15] 1.57 0.40 1.08 0.86 0.90 1.20   0.629 0.137

Current 1.56 0.39 1.06 0.88 0.85 1.19 0.70 1.31 0.621 0.133
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PARALLELIZATION ASPECTS OF ELAFINT3D 

Objectives of Parallel Implementation 

 

As mentioned at the outset, one of the objectives of the current thesis is to develop 

a parallel paradigm to perform large scale computations. In Chapter 1, among other 

things, a brief analysis of the available parallel architectures and the popularly used 

parallel programming softwares has been presented. In Chapter 2, ELAFINT3D has been 

established as an efficient algorithm to solve the moving boundary problems. The focus 

in this part of the thesis is to put forth a parallelization approach for the ELAFINT3D 

framework. The general objectives of the parallelization process are: 

a). Firstly, to develop a computer code that seamlessly executes in a serial mode on 

single-processor machines as well as in a parallel mode on a network of 

processors. The aim is to achieve this goal with minimal alterations to the 

structure of ELAFINT3D program, and  

b). Secondly, to establish an efficient framework that maximizes the utility of the 

available computational resources on all the processors. 

 

The specific aims in this study are the parallelization of the following key 

components of the ELAFINT3D code: 

a) Flow solver. This is the critical and the most computationally taxing portion of the 

calculations. Withstanding the issues of parallel I/O, an efficient parallel flow 

solver relies on well-balanced domain sub-divisions, a clever communication 

protocol that synchronizes the execution of the program on all the processors and 

a parallel matrix system solver.  

b) Local Mesh Refinement. LMR is at the crux of the ELAFINT3D framework. 

LMR enables to adaptively create the required spatial resolution to capture the 
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important flow features. An efficient parallel LMR presents a tremendous 

advantage for the current tool. However, some of phases of LMR being 

intrinsically serial in nature, seek special attention during parallelization. 

c) Other Algorithms: An efficient and synchronous parallel execution of the program 

requires parallelization of all the other models/algorithms employed. Even though 

the flow solver and the LMR are the most computationally intensive components, 

other modules such as GENLS (Object Rendering Algorithm) and Lagrangian 

Particle Tracking Algorithm present significant challenges for parallel porting. 

 

Chapter 3 lays out a parallelization algorithm, the strategies adopted for the 

various components of the computational tool presented in Chapter 2. The logical aspects 

of the strategies employed and the parallel performance aspects are presented. The 

performance statistics of each of the components and their collective behavior is 

assessed. A series of 2D and 3D simulations of several moving boundary problems are 

performed to validate as well as to demonstrate the capabilities of the computational tool. 

Parallel Architecture 

 

The parallel algorithms developed as part of the current work are designed to be 

executed on distributed memory systems. The synchronization among the processors 

relies on data exchanges initiated by calls to MPI subroutines. The performance analysis 

and the case simulations presented in this thesis are preformed on a 12 node Linux 

Cluster running Sun Grid Engine. Each of the nodes is a dual 3.06GHz Intel 32-bit 

processor chip with 4GB RAM and 36GB hard drive. The interconnect on this 

architecture is Myrinet and Gigabit Ethernet. 
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Parallel Flow Solver 

 

The key components of any computational tool are the Input phase, Calculation 

Phase and the Output phase. Depending on the size of the problem and the frequency of 

I/O operations, the Input and Output phases can be significant. The calculation phase is, 

in most cases, the computationally intensive and the most time consuming part of the 

simulations. In the discussion below, the Input and Output phases are analyzed together 

followed by the Calculation phase, which involves lot more details. 

 

Input and Output Phases 

 

Input operations are the essential supplements to the calculation phase of the 

program. These operations can be significant depending on the size of the inputs and the 

frequency at which they are provided to the program. The Input phase is typically, but not 

always, a one-time procedure per execution in non-interactive computational tools. 

However, the operations in Output Phase are mostly performed at regular intervals during 

the execution. The size of the data written is proportional to the size of the problem being 

solved and hence is significantly large. Despite being an important task, there is yet no 

standard consensus on the implementation of parallel I/O techniques. A common practice 

in parallel CFD has been to use serial I/O phase in conjunction with parallelize compute 

phase. In the current implementation, the Input phase is performed in a serial fashion and 

the data output is performed individually on each processor and hence in parallel. For the 

Input operations, one of the processors, say processor P0, reads in all the inputs and 

broadcasts them to all the other processors using MPI calls. All the processors except P0 

are idle while input data is being read in by P0. If the input data is significantly large, this 

will lead to a certain initial inefficiency. The Input Phase is followed by the Calculation 
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Phase. The details of this Phase are discussed in the subsequent sections. The results from 

the Calculation Phase are outputted individually by each processor. The typical 

operations in the Output phase such as writing ASCII files with flow variables or 

generating the restart files could be intensive for problems with large meshes. Writing the 

data separately on each processor rather than generating a single data file for all the 

processors is less intensive on the memory and saves significant communication 

overhead. The data format is designed such that the data files from each of the processors 

can simply be concatenated to obtain the data set for the whole domain. The 

concatenation operation is performed outside of the ELAFINT3D using simple shell 

scripts. The current strategy ensures parallel execution of the intensive Output phase and 

compromises on the parallel execution of the Input phase 

 

Calculation Phase 

 

Upon completion of the input protocol in a serial fashion, the computational phase 

is executed in the parallel mode. The natural choice for distributed memory systems is to 

adopt a Single Program Multiple Data (SPMD) paradigm for parallelization. This strategy 

relies on each of the processors executing the same program on a certain subset of the 

whole domain. Therefore, a domain decomposition algorithm that creates balanced 

partitions becomes crucial for an efficient parallel program. The other crucial portion is 

the communication scheme. In the current setup, METIS, a graph partitioning software is 

used to create load-balanced partitions. METIS takes in the nodal connectivities as the 

input information and creates partitions that are either optimally load-balanced or with 

minimal edge-cuts depending on the requirement. The nodes in each of the created 

partitions are assigned to respective processors. These nodes are called “host nodes” and 

their corresponding processor is called “host processor”. Each processor stores the data 
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and computes the solution only for its “host nodes”. This ideally reduces the 

computational requirement by N times and speeds up the computation by N times if 

executed on an N processor machine. However, the “host nodes” adjacent to the partition 

boundaries have dependencies on the nodes from neighboring processors. These inter-

processor dependencies are called “ghost nodes” and the region that encompasses them is 

called the “ghost region”. To ensure the correctness and accuracy of the solution, the 

local data lists on each processor are modified to include “ghost nodes” in addition to the 

“host nodes”. The solution for the “ghost nodes” on each processor is updated during the 

solve phase by communicating with the corresponding “host processor”. The 

communication overhead due to the solution exchange and the storage overhead due to 

the inclusion of “ghost region” reduce the scalability of the parallel algorithm from the 

ideal value of N. In case of Local Mesh Refinement, the base mesh is refined or 

coarsened adaptively in the course of the simulation. To ensure proper load balance 

through out, domain partitions are altered adaptively to account for the newly created 

meshes. The following presents a step-wise description of the parallel algorithm:  

1. Read in the Inputs on P0 and broadcast to other processors. 

2. Generate the base mesh and use METIS to create domain partitions 

3. Assign the partitions to the respective processors 

4. Define a ghost region on each processor to account for dependencies on 

neighboring processors 

5. Exchange the information in ghost region. 

6. Refine or Coarsen the mesh as required 

7. Repartition the domain to ensure load balance 

8. Execute the serial ELAFINT3D on each processor 

9. Go to step 5 and repeat till the end of simulation. 
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In summary, the key operations in the above procedure are domain 

decomposition, repartition in case of LMR, definition of the “ghost region” and 

communication of the “ghost region” within the iterative solver. The p-METIS program 

from METIS package is used in the current code for domain decomposition and adaptive 

repartition. This feature has been shown to be efficient and scalable for a wide variety of 

problems. The adaptive repartition algorithm assumes the existent partitions as the initial 

condition in creating the new load-balanced partitions. The cost of repartition is minimal 

since it is performed each time LMR is executed. A parallel version of BiCGSTAB(l) 

solver from PeTSc is used to solve the matrix system. An overview of the working of 

METIS and details of the communication protocols are presented below.  

Domain Decomposition using METIS 

 

METIS is a openly available software consisting of a library of programs used to 

partition large irregular graphs, partition large finite-element meshes and to produce fill 

reducing orderings for sparse matrices. The key objective of METIS is to solve the k-way 

partitioning problem defined as follows: Given a graph G=(V,E) with |V| = n, partition V 

into k subsets, V1, V2, V3,…… Vk such that Vi ∩Vj = ∅ for i ≠ j, |Vi| = n/k, and ∪i Vi = 

V, and the number of edges of E whose incident vertices belong to different subsets is 

minimized. This strategy can be extended to graphs with weights associated to vertices 

and edges, in which case, k disjoint sets with equal net vertex-weights are generated. In 

this context, the vertex weight represents the computational task and the edge weight 

signifies the amount of data communication. This weighted approach is relevant to 

problems with immersed interfaces where the convergence rate and hence the 

computational load is non-uniform among the nodal points. An efficient graph 

partitioning tool like METIS, creates partitions with a) equal total weights, hence equal 

computation load and b) minimal edge-cuts meaning optimal communication overhead.  
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METIS adopts the multilevel graph partitioning approach(Figure 3.1) that reduces 

the size of the graph by collapsing its vertices and edges (coarsening phase), partitions 

the smaller graph (partitioning phase) and then uncoarsens it to construct a partition for 

the original graph (uncoarsening phase). Specifically, METIS solves the k-way 

partitioning using recursive bisection method. An initial 2-way partition is followed by 

further bisecting each of the parts. By performing log k phases of bisection creates k 

partitions of the original graph G. The details of the algorithms used in these three phases 

are detailed in the publications by METIS developers, Karypis and coworkers. A 

synopsis of the key concepts in each of the phases is presented here to provide an 

understanding of how the high-quality partitions are created. 

1. Coarsening Phase: The graph G0 is transformed into a series of smaller graphs 

G1,G2,…..Gm such that |V0|>|V1|>|V2|>…..>|Vm|. The strategy in creating coarser 

graphs is to combine a set of vertices of Gi to form a single vertex at the next coarse 

level Gi+1.If ν
iV are the set of nodes of Gi combined to form a vertex ν (referred to as 

multimode) of Gi+1 then the weight of vertex ν is set equal to the sum of weights of 

vertices in ν
iV . The connectivity information on Gi is preserved by setting the edges of 

ν as the union of edges of ν
iV . This enables one to create partitions with the same 

edge-cut on both coarser and finer levels. Figure 3.2 shows some of the methods of 

updating the vertex and edge weights in coarsening phase. There are various 

heuristics proposed to determine the set of multinodes in graph coarsening. Four such 

methods are described in detail in Karypis, 1998. 

2. Partitioning Phase: In the partitioning phase of the multilevel algorithm, a bisection 

Pm of the coarse graph Gm that features minimal edge-cut and equal total vertex-

weights is generated. This task becomes relatively easy, since the coarsening phase 

sets the vertex and edge weights on the coarser graph to reflect the weights of the 

original graph. Several algorithms viz. spectral bisection, geometric bisection or 
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combinatorial methods can be used to create the partitions Pm. The reader is referred 

to the corresponding literature for details on these methods. partition  

3. Uncoarsening Phase: The partition Pm of Gm is projected back to G0 by going through 

intermediate partitions Pm-1, Pm-2,…..,P1,P0. Assembling the partition Pi from Pi+1 is 

done by the assigning the set of vertices ν
iV  collapsed to form ν ∈ Gi+1 to the 

partition Pi. (Pi[u] = Pi+1[ν], ∀ u∈ ν
iV ). Even though Pi+1 minimizes the edge-cuts on 

Gi+1, the projected partition Pi may not be the optimal partition for Gi given more no. 

of degrees of freedom. Hence a partition refinement algorithm is performed to fine-

tune the partition on the ith level before projecting it on to the next finer graph Gi-1. 

Again, the reader is referred to the articles by Karypis et al. for further details on the 

refinement algorithms.  

Definition of Ghost Region 

 

Though the data structures used in parallel implementation are similar to their 

serial counterparts, only a list of data local to a processor is generated due to domain 

partitioning. To ensure exactly the same solution from both serial and parallel executions, 

a communicating list consisting of all the inter-processor dependencies or the “ghost 

nodes” is defined on each processor. This list is referred to as “ghost region” in this 

article. As mentioned before, the definition of “ghost region” is critical to the 

performance of the parallel algorithm. The definition of “ghost region” in the present 

study is as follows: If p and q are processors hosting adjoining partitions and the solution 

at a point p1 on processor p depends on the value at point q1 on processor q, then, q1 

belongs to “ghost region” of the processor p. The mesh point q1 is solved for on its host-

processor q and the solution is communicated to processor p and thereby updated on the 

processor p. 
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Even though inclusion of “ghost region” is not the only method of achieving the 

same solution as the serial code, it is preferred over other methods because it also serves 

the purpose of minimizing the alterations to the existing serial code. This feature is 

illustrated in the following example from Figure 3.3(a). The discretization of Laplacian 

operator at point P involves its neighbor E as in the following equation. 
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 By virtue of partitioning, P and E belong to processors p and q respectively. If 

processor p were to store data lists for only the “host nodes”, point P would require 

special treatment while evaluating the Laplacian operator. However, with the concept of 

“ghost region”, point E is also included in the data list on processor p but the value φE is 

obtained by communicating with the processor q. This preserves the structure of the 

stencil at point P.  

 

In the above illustration, the evaluation of the Laplacian operator requires 

information about one computational point from the adjacent partition and hence it would 

suffice to include one layer of grid points from the partition q in the “ghost region” of 

processor p. The extreme possibility one could encounter in ELAFINT3D is during the 

flux evaluation for ENO scheme in the level-set method, where information for up to four 

neighbors in each direction is required. This prompts us to set the width of the “ghost 

region” to four mesh points around each partition. The extent of ghost region close to the 

partition boundary is clear from the close up view shown in Figure 3.3(b). 

 

In case of LMR, the definition of “ghost region” is more complicated. Unlike the 

case of uniform grid, the Laplacian operator has dependencies on many more 

computational points. For example in Figure 3.3(c), the Laplacian operator at point P is 

dependent on the point E1 which is at the far top corner of the neighboring base mesh. 
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This happens especially for the points on the mesh interfaces or “ref-boundary cells” as 

discussed in Chapter 2. By virtue of the finite-volume discretization at these points, the 

extent of the computational stencil is expanded beyond the 5-point stencil. Hence for the 

case of LMR, if one of the child cells of a certain base cell belongs to the “ghost region”, 

all the other child cells belong to that base cell also belong to the “ghost region”. Even 

though this strategy can be costly for very high levels of refinement and also in 3D, this 

significantly eases the logical aspects of the definition of “ghost region”. Also, it will be 

apparent later in this chapter, including all the cells in the tree structure of a base cell will 

help devise efficient strategy for parallel LMR. 

 

A peripheral aspect for better parallel performance is the indexing of the “host nodes” 

and the “ghost nodes”. It has been shown that by numbering the “host nodes” followed by 

the “ghost nodes” will produce significant gains in the context of parallel iterative 

solvers, especially for matrix-vector multiplications. The numbering scheme determines 

the order in which the elements of the matrix are loaded into the computer memory. 

Storing all the “host nodes” sequentially ensures data proximity in assembling the global 

matrix. This strategy reduces the memory latency in the solver phase. 

Communication of Ghost Region using MPI 

 

As mentioned before, Message Passing Interface (MPI) is used for data 

communication in parallel code. The system-independent feature of MPI makes it the 

right software for distributed systems architecture where different workstations 

potentially possess varied configurations. The MPI features that are widely used in the 

code are a) MPI_(I)SEND, MPI_(I)RECV for (non-blocking)blocking point-point 

communications during domain decomposition and ghost region exchange b) 

MPI_BCAST for collective communication such as broadcasting the inputs to all the 
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processors, c) MPI_GATHER and MPI_REDUCE to perform collective operation such 

as for residual evaluation and output operation, d) MPI_BARRIER,MPI_WAIT for 

synchronization of the code at various junctures, e) MPI_WTIME to calculate the 

computation and communication times of the code etc. There are several MPI data types 

that have been defined to facilitate in data communication.  

 

The exchange of the “Ghost Region” is at the crux of the parallel code 

performance. This operation can be done in either a synchronous or asynchronous fashion 

using MPI. In the synchronous communication, the computations are halted till all the 

processors complete their communication calls. This is suited to problems in which the 

load is perfectly divided among a series of processors with uniform processor and data 

communication speeds. Although it strategy ensures the same solution as a serial 

execution, synchronous communication protocol leads to under utilization of the 

computer resources in not so perfect systems.  

 

The asynchronous mode of communication is better suited for the general case, 

with disparities in the load-balancing, processor and network performances. This is a 

non-blocking strategy which allows an overlap in the communication calls without 

having to wait for each processor to finish its communication related tasks. This scheme 

allows for the processors to perform useful computations upon performing their 

communication calls. However, this imposes an onus of managing buffers to hold 

messages until the receiving process is ready. Hence in this mode of communication the 

asynchronous calls are interspersed with logically placed barrier calls to ensure the 

correctness of the solution.  

 

The key to an efficient scalable solver will be communication overhead incurred 

during the solution of the discrete system. Since each processor assembles the matrix and 
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the vectors for its “host nodes”, the data exchange due to the “ghost nodes” during the 

matrix-vector operations will determine the communication overhead and hence the 

solver efficiency. In the current study, parallel version of BiCGSTAB is used from 

PeTSC package. The numbering scheme adopted for “host” and “ghost” nodes enables 

for efficient use of Petsc solvers.  

Parallel Local Mesh Refinement 

 

As detailed in Chapter 2, LMR is used in the current framework to adaptively 

create spatial resolution as required by the simulations. This strategy enables an efficient 

use of meshes to resolve the required flow features. Since a parallel paradigm is adopted 

to perform large scale calculations, it is imperative to create an efficient parallel 

algorithm for LMR. The sequence of operations for a serial LMR implementation are : 

1. Based on the refinement criteria, refine or coarsen the existent mesh structure 

2. Assign pointers for parent/child cells and also the neighbors 

3. Smooth the refined mesh to ensure utmost a single level difference between 

any pair of neighbors. 

4. Assign variable values to the newly created meshes by interpolating from the 

older mesh. 

 

In the above algorithm, the Steps 1,2 and 4 are independent on each processor. Given an 

initial mesh structure, the refinement criteria can be evaluated at each “host cell” and the 

cell can be refined or coarsened accordingly. However, for the “ghost cells” the 

refinement criteria have to be evaluated on their “host processor” and be communicated 

to the “ghost processor”. This operation can bear a significant communication overhead 

depending on the number of “ghost cells” on each processor. Due to the high processor 

speeds, it is sometimes efficient to perform computations rather than exchange 
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information if all the data is available. One of the strategies here is to evaluate the 

refinement criteria for the “ghost cells” along with the “host cells” and refine or coarsen 

them as required. In the current context this strategy is adopted to avoid the 

communication overhead. Assigning the pointers for each of the newly created meshes 

doesn’t require any communication. Also the 4th step which involves interpolation of the 

values from the older meshes to the newly created meshes is only computational work. 

Only the 3rd Step which involves smoothing of the refined meshes involves 

communication among the processors. In serial algorithm, the smoothing of the refined 

meshes is a global operation. This operation is performed starting with the first base mesh 

and is recursively performed for all the cells in the tree structure. Once the whole tree has 

been traversed, the operation proceeds to the next base mesh. However, in parallel, 

executing the smoothing operation on each processor independently could create different 

meshes in the “ghost region”. Some of the strategies to perform this mesh smoothing are  

1. Strategy I 

a. Choose a base cell A from the global mesh. 

b. Traverse through the tree structure of A on its “host processor”. Choose a 

cell B in the tree. 

c. Consider the neighbor (say C) B.  

d. If (levelB – levelC) > 1. Refine C. Smooth the cell C 

e. If (levelC – levelB) > 1 Refine B. Smooth the cell B 

f. If neither of the above conditions is satisfied go to Step c till all the 

neighbors are exhausted. 

g. Go to the next cell in tree structure of A and repeat Steps ( c-f) 

h. Go to the next base cell and repeat Steps ( a-g) 

The above strategy operates on only one cell at a time. All the processors are 

idle except the “host processor” of the cell under consideration. Although the 
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resultant smoothed mesh is unique and is identical to the mesh created by a 

serial execution, this approach is completely sequential. 

2. Strategy II 

In this approach, the “host cells” on each processor are considered for 

smoothing. Any cell refined by virtue of smoothing is communicated to all its 

“ghost processors”. 

a. Consider a “host cell” A on processor p. 

b. Perform smoothing operation for the A on its “host processor”. 

c. If the cell A or one of its neighbors B is refined due to smoothing, 

communicate the change in level to their “ghost processors” and refine the 

corresponding cells on the “ghost processors”. 

d. The updated refinement initiates a smoothing operation on the “ghost 

processor” as applicable. 

By adopting the above strategy recursively for all the “host cells”, and 

performing smoothing operation when a cell in the “ghost region” is updated 

will create a smoothed refined mesh. However, the number of recursions on 

each processor is dependent on its “host cells” and also the timing of the 

update of “ghost cells”. Even though this strategy leads to a unique refined 

mesh as in the previous case, the number of recursions for higher levels of 

refinement, especially in 3D, will be humungous. 

3. Strategy III 

A third strategy which is effective and also scalable is adopted in the current 

thesis. The main drawback of Strategy II was to update the “ghost cells” as 

soon as they are refined. This update in many cases, also triggers the 

smoothing operation in the vicinity of the “ghost cell” leading to an increase 

in the number of recursions. So a different approach is adopted where, the aim 
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is not to create the same smoothed mesh as in the serial algorithm, but to 

create a smoothed yet marginally different mesh. 

a. Consider a cell A on processor p. cell A can be a “host” or a “ghost” cell. 

b. Perform smoothing operation for the cell A. 

c. Perform the above steps recursively on all the cells on processor p. 

d. After all the cells are exhausted, match the “ghost region” on the processor 

p with the other processors. If there is a mismatch of refinement of any 

particular cell, correct it by refining both of the cells to the same level. 

e. Step d ensures that the smoothing operation will create consistent 

refinement in all the ghost regions. 

Even though the current strategy will not create an unique smoothed mesh, the scalable 

nature of the approach makes it attractive. Moreover, the smoothing operation of LMR is 

performed in the view of discretization schemes for the governing equations. Since, the 

initial refinement based on the solution criteria has been performed exactly, the 

refinement alterations due to smoothing operation will only enhance but not deteriorate 

the refinement in the domain. Also the current approach can be performed independently 

on each domain and only has to synchronized for the cells in the ghost region.  

 

Parallel Sparse-Linear Solver 

 

The key component of the flow solver is the iterative solver for the sparse linear 

system created from the discrete set of governing equations. As described in Chapter 2, 

BiCGSTAB(l) is used in the current framework to solve the matrix system. The parallel 

version of BiCGSTAB(l) from the PeTSc package is used in the current framework. A 

block Jacobi preconditioner is used for the parallel version while an incomplete LU 

decomposition is used for the serial version of ELAFINT3D. 
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Other Parallel Algorithms and Miscellaneous Issues 

 

The main components of ELAFINT3D in view of parallelization are the flow 

solver and LMR. The strategies described above have been found to be very efficient in 

terms of scalability and implementation. The parallel performance of the strategies is 

presented later in this chapter. Apart from the above components, other models and 

algorithms implemented in the framework pose significant challenges to parallel porting. 

Some of such issues are 

1. GENLS – an object rendering algorithm: 

The level-set algorithm is an important component of the current computational 

tool. The embedded objects, which are Lagrangian entities, are represented on the 

Eulerian mesh using the level-set method. The interaction of the flow solver with 

the immersed objects is also through the level-set field. However, generating a 

level-set field for arbitrary shapes is not straightforward. GENLS algorithm in the 

current tool generates a level-set field for any three-dimensional object 

represented by a surface mesh. The GENLS algorithm comprises of the following 

key steps: 

a. Identify the all the fluid mesh points that straddle the embedded object. 

For these points, calculate the shortest signed distance from the object by 

drawing a normal on to the embedded surface. 

b. Once this layer of mesh points adjacent to the object are identified and 

their signed distance function is calculated, use fast-marching method to 

calculate the signed-distance of all the other points in the domain. 

The above approach is a key component of ELAFINT3D, since the level-set field 

can be explicitly defined for very few shapes. Using GENLS any surface mesh 

can be imported into the fluid domain in the form of a level-set field. During 

parallel execution, it is imperative that the above algorithm be implemented in 



www.manaraa.com

  88 

  

 

parallel. The first step of identifying the fluid mesh points (“host cells”) straddling 

the object can be performed individually on each processor. However, executing 

the fast-marching algorithm in parallel requires communication between the 

processors. The parallel fast-marching strategy developed by Hermann has been 

implemented in the current tool. The speedup realized in the implementation of 

GENLS in the current code was comparable to that reported by Hermann. 

Strategy to create the partitions on the base mesh 

Since the applications of interest are mostly moving boundary problems, LMR is 

invoked for regions near the immersed object. However, in the parallel 

implementation, the global base mesh is partitioned even before defining level-set 

field. Hence the initial partitions are oblivious to the refinement to occur near the 

interfaces. Depending on the location of the interface, the initial partitions could 

create a huge load imbalance during the initial LMR execution leading to large 

computational times. A strategy to bypass the above conundrum is to weigh the 

cells near the interface higher than the cells away from the interface. In case of 

standard geometries, it is easy to determine the proximity to the object, but for 

arbitrary objects, created using GENLS, even an approximate assessment seem to 

have improved the performance significantly. 

2. Strategy to create the partitions with LMR 

As described earlier, ParMetis is used in the current code for domain 

decomposition. One of the advantages of using ParMetis is that, it has been 

designed to create partitions for multi-physics problems. In the current 

framework, the computational load on all the mesh points is not uniform. For 

example, a base mesh cell has to perform far less computations as compared to a 

cell at 5th level of refinement. The “ref-boundary cells” incur extra computation 

during coefficient assembly and also in the solver due to their extended stencil. 

Similarly, the refined cells have to perform extra logical operations when 



www.manaraa.com

  89 

  

 

performing interpolations or identifying the neighbors in LMR algorithm. The 

non-uniformity in the computational loads of refined and unrefined mesh points 

prompts for strategies to assess the differences and balance these loads. ParMetis 

allows one to weigh each of the vertices according to their computational task, so 

as to create partitions of equal computational task. This facility is exploited in the 

current thesis, to weigh the cells based on their level of refinement. The weight of 

a cell at nth level is assessed to be 2n-1. So a cell at level 1 will have a weight of 1. 

This strategy ensures equal distribution of refined cells across the processors. In 

fact, the above strategy proved to be the key to attain scalability for the parallel 

LMR algorithm. 

 

Performance analysis 

 

The most commonly used measures of performance of parallel programs are 

speedup and efficiency. Speedup is defined as the ratio of runtime of the serial code to 

that of the parallel code. Unlike serial program, the parallel runtime depends on the no. of 

processors (p) in addition to the problem size. The speedup is defined as 
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Tserial is defined as the execution time for unified ELAFINT3D running in serial 

mode on a single processor of the parallel system. If the speedup equals p, the program is 

said to attain linear speedup. Such an occurrence is unusual in these simulations because 

of the communication overhead. The parallel execution time can be decomposed as 

follows 
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The startup time includes the CPU time used up for I/O operations and for domain 

decomposition. The communication time accounts for the exchange of “ghost region” 

information across various processors. The calculation time is the time taken for the 

floating point operations involved in the execution of the serial ELAFINT3D on each 

processor on its local data set. In addition to the overall speedup as defined in Eq. 3.2,                        

the solver speedup is measured as the ratio of CPU time for the solve phase in serial 

simulation to the corresponding runtime (includes Tcalc and Tcomm but not Tstartup) in 

parallel execution mode. Efficiency is the measure of process utilization in a parallel  

program, relative to a serial program. It is defined as  
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If E(n,p) = 1 the program is said to be exhibiting linear speedup, if E(n,p) < 1/p 

the program is exhibiting slowdown.  

 

The performance of the parallel ELAFINT3D has been evaluated for both two 

dimensional and three dimensional problems. The key parallel algorithms implemented in 

the current setting are a) parallel flow solver b) parallel LMR c) parallel GENLS. The 

speedup for each of these components individually is calculated based on the CPU time.  

 

The timing data for two dimensional problems are from flow around a stationary 

cylinder. The domain size of 10x10 with a cylinder of diameter of 1 located at (5, 5) is 

used in these calculations. Table 3.1 tabulates the CPU time for a 500x500 mesh without 
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LMR. The number of processors is increased from 1 to 24. It is apparent that the speedup 

in both the solver time and total calculation time is linearly proportional to the 

computational load on each processor. Table 3.2 shows the scaling of the data output 

phase for a mesh size of 1000x1000. The linear speedup with increasing processor count 

shows the gains of executing output operations individually on each processor. Table 3.3 

shows the effect of increasing computational load by fixing the number of processors. 

Despite the discrepancies at low computational loads, the CPU time scales proportional 

to the load for mesh sizes 250x250 to 1000x1000. The computational time increases by 

14 times with an increase of 15 times in the number of computational points. 

 

The timing data from a LMR case is tabulated in Table 3.4. With a base mesh of 

200x200 and 5 levels of refinement, the number of processors is varied from 1 to 12 to 

obtain a nearly linear speedup. It is to be noted that the number of mesh cells on each of 

the processors is higher due to an increased extent of ghost region. The LMR time is 

therefore proportional to the number of cells including the ghost cells. The solver time 

however, is proportional to the number of processors with a deviation due to increased 

dependencies on the ghost region. This deviation increases with an increase in the 

number of levels. Table 3.5 shows the CPU times for a base mesh of 200x200 on 12 

processors. The refinement levels are varied from 1 to 5. The variation of LMR time is 

non-linear with the increasing number of levels. This is apparent from the fact that the 

size of tree and hence the tree searches increase proportional to 4n where n is the number 

of refinement levels. The CPU time for the solver is still proportional to the increase in 

the computational load.   

 

The timing data for the three dimensional calculations are based on flow around a 

stationary sphere in a 10x10x10 domain. A sphere of diameter 1 is located at the center of 

the domain with an oncoming flow in x-direction. A set of timing data has been tabulated 
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in Table 3.6 for a 100x100x100 mesh without LMR. In this case the number of 

processors are increased from 1 to 24. The solvers and the total code show a speedup of 

22.18 and 21.15 on a 24 processor run. This data confirms that speedup can be attained 

for both two and three dimensional problems.  

 

The other component of the parallel framework is parallel GENLS. In GENLS, 

the interface distance is exactly calculated on each interfacial cell. The distance front is 

advanced in both + and – directions starting with the closest point. Table 3.7 shows the 

timing data for 1-8 processors for the case of a sphere. The timing data shows that with 

increasing number of processors, the code scales well with the processor count. In this 

case, the interface is located in a symmetric manner in the domain thereby uniformly 

distributing GENLS load to all the processors. 

 

Unified ELAFINT3D 

 

One of the specific goals of the current work is to develop a framework to 

perform simulations in either serial or parallel modes as deemed fit by the user based on 

the problem size. This goal is achieved by including CPP (C PreProcessor) #ifdef 

statements in the ELAFINT3D code as a means to switch between the single processor 

version or the parallel execution mode. This avoids maintaining different versions for 

varying modes of operation. 

Results and Discussion 

 

The ELAFINT3D is currently being used to simulate flows involving stationary 

and moving embedded interfaces in both two and three dimensions. Hence it is desirable 

to ensure that the unified parallel version of ELAFINT3D possesses similar capabilities. 
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In this view, the following test cases have been coined for to demonstrate the parallel 

execution capability and performance assessment. 

(a) Flow around a stationary circular cylinder at Re = 300 ( 2D stationary boundary) 

(b) Flow around a transversely oscillating cylinder at Re = 200 (2D moving 

boundary) 

(c) Flow around a stationary sphere at Re = 300 ( 3D stationary boundary) 

(d) Simulation of interacting spheres settling under gravity ( 3D moving boundary) 

(e) Simulation of the flutter of a falling oblate ellipsoid (3D moving boundary) 

The results from these simulations are presented in the following sections along 

with numerical data from performance analysis. 

Flow around a stationary cylinder at Re = 300 

 

The computational setup for the simulations of flow around stationary cylinder is 

shown in Figure 3.4(a). The cylinder of diameter 1.0 is placed at (12,15) in a 30x30 

domain. The left domain boundary is an inlet with a uniform velocity of 1.0 and the right 

boundary acts as an outlet. Symmetry boundary condition is imposed on the top and 

bottom boundaries. A base mesh density of 150x150 is used with 5 levels of refinement 

for LMR. The maximum number of mesh points in the course of simulation is 44444. 

The current simulation is carried out on 6 processors. The domain partition is illustrated 

in Figure 3.4(b). Figures 3.4(d) display the mesh refinement in the vicinity of the cylinder 

and the wake region respectively. The time history of drag and lift coefficients is 

recorded for validation purposes. The mean drag value in this case is 1.38. The Strouhal 

number calculated from the oscillation frequency of the lift coefficient is 0.217. These 

values match well with the literature. The Karman vortices being shed from the cylinder 

are displayed in Figure 3.4(c). This simulation illustrates the capability to simulate two-

dimensional flows around stationary objects employing the parallel version of 
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ELAFINT3D. The computational time for simulating 50,000 timesteps or 100 non-

dimensional time units is approximately 8 hours.   

 

Flow around a transversely oscillating cylinder  

 

The flow around a circular cylinder, oscillating transversely with amplitude of 

0.25D and frequency of 0.2 at Re = 200 has been simulated to validate serial version of 

ELAFINT3D. For the above combination of amplitude and frequency, the simulations 

and Koopmann’s experiments predicted lock-on phenomena. The aim of the current 

simulation is to validate the parallel algorithm for 2D moving boundary problems by 

reproducing the lock-on behavior. The computational setup for this case is similar to that 

of the stationary cylinder. The base mesh employed in this case is 150x150. The 

calculations are performed on 4 processors with 5 levels of refinement. Figure 3.5(a) 

illustrates the vortex shedding from the oscillating cylinder. The time-history of lift 

coefficient on the cylinder is used to calculate a Strouhal number of 0.2 in this case. The 

wall clock time for simulating 50000 timesteps of this case is 15 hours. 

Flow around a stationary sphere at Re= 300 

 

One of the canonical simulations used to validate three-dimensional flow 

capability of ELAFINT3D was flow around sphere. The flow around sphere at a 

Reynolds number of 300 generates unsteady vortex shedding. The classical hair pin 

vortex structures are evident for this Reynolds number. The current study aims to validate 

the parallel algorithm for three-dimensional flows by reproducing the above result. The 

computational setup consists of a sphere of diameter 1.0 located at (6, 7.5, 7.5) in a 

domain of 30x15x15. The base mesh is 84x42x42 with 5 levels of refinement for LMR. 

The number of mesh points at the beginning of the simulation after refinement are 
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318589 and at the end of the simulation with the wake being refined are 753800. A slice 

of the center plane shown in Figure 3.6(a) illustrates that the refinement has occurred 

only as required in the wake of the sphere. The mesh away from the sphere and away 

from the wake has not been refined because of low velocity gradients. The hairpin 

vortices being shed from the sphere are illustrated in Figure 3.7(a-c) by the iso-surfaces 

of λ2. A mean drag coefficient of 0.658 has been calculated in this case. The Strouhal 

number is 0.136. These values compare well with the study of Johnson et al, 1999. The 

observations from this numerical experiment illustrate the efficiency of LMR in capturing 

three-dimensional flows around stationary embedded objects. Also, the execution on 12 

processors has made this simulation possible in 5 days for 12000 timesteps and non-

dimensional time of 56 units.  

Interaction of two spheres settling under gravity 

 

The purpose of this current study is to simulate the interaction of two spheres 

settling under gravity. The computational setup comprises of two spheres of radius 1.0 

initially located at (4,5,44) and (6,5,48) falling freely under gravity in a domain of 

10x10x50. The initial base mesh is 25x25x125 with 4 levels of refinement. The non-

dimensional parameters for the simulation are Froude number(Fr) = 1.0, density ratio = 

1.468, moment of inertia = 2.46. From their numerical simulations, (Johnson et. al., 1996) 

have observed that the spheres drift, kiss and then tumble as they settle under gravity. 

The objective of the current study is to predict the time to collision in order to validate 

the current tool. The velocity profiles for the vertical velocity of the spheres and their 

vertical positions are show in Figure 3.8(a-b). The contours of the vertical velocity 

components are shown in Figure 3.9(a-b). A close up of the y-component of vorticity as 

the spheres approach to collide is shown in Figure 3.10(c, d). The time to collision as 

predicted by the current calculations is 38 non-dimensional units which is close to 40 
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units as predicted by Johnson et. al.(1996). The current simulation is performed on 6 

processors with a maximum of 705691 mesh points at the end of simulation. The mesh 

refinement is illustrated in the Figure 3.10(a). The iso-contours of λ2 reveal the vortical 

structures in the wake of the interacting spheres. 

Flutter of an settling ellipsoid  

 

The focus of the current numerical experiment is the study the settling of an 

oblate ellipsoid settling under gravity. Numerous studies, both experimental and 

numerical, have been done in regard to settling discs, cards, ellipsoids etc (Field et 

al.1997, Fonesca et al.,2005). It has been observed that the fall of these objects occurs in 

either settling or fluttering or tumbling regime. In the current study, the combination of 

parameters (Fr = 0.6 & Re = 450) chosen results in a fluttering motion as the ellipsoid 

settles under gravity. The computational setup consists of an oblate ellipsoid with an 

aspect ratio of 7.5 located at (15,25,140) in a (50,50,150) domain. The initial orientation 

of the normal of the ellipsoid is at 63.4o with the vertical axis. A base mesh of 63x63x175 

is used with 3 levels of refinement are used in this simulation. The computations are 

performed on 10 processors with about 1.5 million grid points at the end of the 

simulation. The refinement pattern is shown in the Figure 3.11(b). The vortical structures 

generated by the fluttering motion of the ellipsoid are illustrated by the λ2 iso-surfaces. 

The graphs shown in Figure 3.13(a-c) show the x and z- components of the velocity and 

also the y-component of the angular velocity of the ellipsoid. From these plots the 

oscillatory behavior of the motion is apparent. This application illustrates the ability of 

the current tool to simulate flows involving arbitrary geometries undergoing complex 

motions. The execution of the parallel version of ELAFINT3D in conjunction with LMR 

enables one to accurately capture intricate flow features of complex three-dimensional 

applications. 
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Conclusions 

 

A unified algorithm that can be compiled to be executed either in serial mode on a 

sequential machine or in a parallel mode on a series of workstations has been developed. 

The current framework features automatic domain decomposition method and efficient 

communication heuristic that results in a scalable parallel code. A parallel performance 

strategy has been presented. The capabilities of the current technique have been 

demonstrated for two and three dimensional flow situations. The timing data indicates 

significant speed up for both 2D and 3D cases.  
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Speed up N NCELLS Ratio Ttotal Tsolver 
Total Solver 

1 252004 1 27.189 15.403 - - 

2 126003 2 14.051 7.938 1.93 1.81 

4 64480 3.9 7.083 3.980 3.84 3.88 
8 31636 7.96 3.694 2.036 7.36 7.56 
12 21520 11.7 2.528 1.415 10.76 10.88 
24 10747 23.4 1.312 0.709 20.73 21.72 

Table 3.1 CPU times for flow around a cylinder with increasing number of CPUs 

 

 

 

 

 

 

N NCELLS Ratio Toutput Speedup 

1 252004 1 5.89 15.403 
2 126003 2 3.06 1.92 
4 64480 3.9 1.55 3.80 
8 31636 7.96 0.83 7.10 
12 21520 11.7 0.56 10.52 
24 10747 23.4 0.27 21.81 

Table 3.2 CPU times for data output in case of flow around a cylinder. 
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Table 3.3 CPU times for flow around a cylinder with varying mesh densities. 

 

 

 

 

 

 

 
Speed up 

N NCELLS 
NCELLS
(GHOSTS

) 
Ratio TLMR Tsolver 

LMR Solver

1 67389 67389 1 4.32 6.35 - - 

2 32184 33908 1.05 2.33 3.33 1.85 1.91 

4 16173 18124 1.12 1.22 1.68 3.55 3.78 
8 8828 11081 1.35 0.74 0.86 5.82 7.43 
12 5465 7682 1.40 0.50 0.59 8.58 10.76 

Table 3.4 Performance analysis of LMR with varying no. of processors. 

 

Speed up 
Mesh NCELLS RATIO Ttotal Tsolver Total Solver

50 x 50 219 387.11 0.080 0.056 122.25 100.7 
100 x 100 876 96.77 0.12 0.081 81.51 69.64 
250 x 250 5339 15.88 0.59 0.390 16.58 14.46 
500 x 500 21520 3.94 2.528 1.415 3.87 3.99 
1000x1000 84776 1.0 9.78 5.641 1 1 
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NLEV NCELLS NCELLS
(GHOSTS)

NCELLS
(RATIO) TLMR TIME 

(RATIO) 

1 3332 3482 1.0 0.14 1.0 

2 3687 3945 1.13 0.16 1.15 

3 4238 4673 1.34 0.21 1.5 
4 4976 6120 1.76 0.31 2.21 
5 5465 7682 2.21 0.50 3.57 

Table 3.5 Performance analysis of LMR with increasing refinement levels. 

 

 

 

 

 

 
Speed up N Ttotal Tsolver 

Total Solver 
1 89.64 63.62 - - 
2 41.18 33.14 1.90 1.92 
4 23.47 17.01 3.82 3.74 
8 12.05 8.35 7.44 7.62 
12 8.09 5.80 11.08 10.97 
24 4.16 2.87 21.56 22.18 

Table 3.6 Timing data for flow around a sphere with a mesh size of 100x100x100. 
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N TGENLS SpeedUp 

1 5.66 1 
2 2.90 1.95 
4 1.44 3.92 
8 0.72 7.86 

Table 3.7 Parallel performance for rendering a sphere using GENLS. 
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Figure 3.1 Illustration of the three phases of multilevel graph. 
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Figure 3.2 Different ways to coarsen a graph 
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Figure 3.3 Illustration of Ghost Region. (a) Discretization of a mesh point next to 
partition boundary (b) Extent of Ghost Region near partition boundary (c) 
Discretization of mesh point at the mesh interface 
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Figure 3.4 Flow around stationary cylinder at Re = 300. a) Computational Setup b) 
Domain decomposition c) Unsteady vortex shedding d) Close up view of the 
cylinder with mesh refinement. e) Time history of drag and lift coefficients. 
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Figure 3.5 Flow around an transversely oscillating cylinder a) Vortex shedding from the 
oscillating cylinder. b) The time history of drag and lift coefficients. 
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Figure 3.6 Flow features on z= 7.5 plane.for flow around a sphere. a) The adaptively 
refined mesh in the wake of a sphere b) Contours of z-component of vorticity 
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Figure 3.7 Vortical Hairpin structures in the wake of a sphere a) x-y view b_ x-z view 
and c) isometric view. vorticity 
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Figure 3.8 The vertical velocity profile and the positions of the spheres. a) Vertical 
velocity profile with collision. b) The vertical position of the spheres in time. 
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Figure 3.9  Flow around two interacting sphere on y= 5.at the instant of collision  a) The 
vertical velocity contours on the plane in isometric view b) The xz view of y= 
5.0 plane depicting the velocity contours. 
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Figure 3.10 Flow  around two interacting sphere at the instant of collision  a) The mesh 
refinement in the wake of the spheres. b) The position of the two spheres 
relative to each other and also relative to y = 0.5 plane. c) The iso-contours of  
λ2 indicating the vortical structures. d) An isometric view of the vortical 
structures. 
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Figure 3.11 Flow  around an oblate ellipsoid fluttering under gravity plotted on y = 25 
plane. a) The contours of y-component of vorticity b) The adaptive mesh 
created in regions of high vorticity. 
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Figure 3.12 The trajectory of the oblate settling under gravity. 
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Figure 3.13 Different views of the vortical structures emanating from a settling ellipsoid. 
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Figure 3.14  The velocity components of the ellipsoid as is moves with fluid forces a) 
The vertical fall velocity, b) The transverse velocity developed mainly due to 
the initial orientation and inertia, and c) The angular velocity of the ellipsoid 
as it rotates  due to the fluid dynamic moments 
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SUMMARY AND FUTURE WORK 

Summary 

 

The objective of this thesis was to develop a framework capable of solving a wide 

variety of moving boundary problems in fluid mechanics. The applications of interest are 

biomedical applications such as dynamics of heart valves, peristaltic motion in GI tract, 

or material processing applications such as interaction of an growing dendrite with its 

own melt and other embedded ceramic particles or general fluid-structure interaction 

applications such as falling of leaves from trees or flow around bluff bodies. 

 

The numerical tool that can solve these problems has to be capable of capturing 

the interface-flow interactions and also solving the complex flow phenomena. In the 

current thesis, these features are facilitated by developing the ELAFINT3D framework. 

This framework entails a) a Cartesian grid based fluid flow solver b) a Level-set 

algorithm for interface tracking c) Sharp-Interface Method to capture the interfacial 

dynamics d) LMR to improve the accuracy of the solution as required e) Sparse matrix 

solvers to boost the efficiency of the method and finally f) MPI based parallel algorithm 

to enable the solution of large scale problems. 

 

The main contributions of the current thesis are a) to conceive and formulate the 

sharp interface method to capture the fluid-object interactions b) to implement the 

numerical technique in a computer code ELAFINT3D c) to increase the efficiency of the 

tool by implementing sparse matrix solvers, d) to develop parallel heuristics of 

ELAFINT3D, thereby enabling large scale computations. By developing the above 

components and employing LMR, the current ELAFINT3D tool is capable of solving 

large scale three-dimensional moving boundary problems.  
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This general purpose tool has been employed to solve a variety of problems. A set 

of canonical problems such as flows around cylinders and spheres have been simulated 

for validation purposes. The scaling analysis of the parallel code is performed. This 

analysis has shown the individual components, (namely solver, LMR, GENLS) and all of 

them in conjunction perform well on a distributed memory architecture.  

 

More complicated scenarios such as settling of two spheres and fluttering motion 

of an ellipsoid have been simulated to demonstrate the strengths of the tool. These 

simulations have resulted in accurate results with reasonable computational expense. 

 

Future Work  

 

The numerical experiments performed in the current thesis have demonstrated the 

capability of the framework to solve large scale, three-dimensional moving boundary 

problems. The various components incorporated in the ELAFINT3D framework such as 

Sharp Interface Method, LMR, GENLS etc., have been thoroughly analyzed individually 

and in combination with other components of the framework.  

 

However, in an integrated framework such as ELAFINT3D, the performance is 

dependent on the efficiency of the individual components as well as their interactions. 

Also, the applications of interest are large scale multi-physics problems in general. Many 

a times, the efficiency of a particular approach/implementation could be more suitable to 

a certain class of applications than others. Especially in parallel implementation of 

ELAFINT3D, the optimization of load among the processors for various phases of the 
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calculations is particularly difficult. However, load imbalance in any stage of the 

simulation results in an inefficient overall calculation. The current parallel 

implementation seeks improvements in this regard. The following list elucidates the 

specific issues that could have an immediate effect on the parallel performance of 

ELAFINT3D: 

a) With LMR in place, during domain decomposition phase of the base mesh, the 

regions of refinement are not known apriori. However, the initial performance 

of LMR depends critically on the distribution of refined meshes across the 

processors. A strategy has to be devised to automate the assignment of weights 

to the vertices based on their proximity to the embedded objects. 

b) The definition of “ghost region” for parallel LMR, is an over estimate of the 

actual requirement. The current scheme either includes the whole tree structure 

of a given base mesh. This extra storage required could be critical in cases of 

higher levels of refinements and in 3D 

c) The size of the mapping data structures in the current implantation are of the 

global mesh size. These arrays are stored on each processor. The memory 

requirement to store these arrays can be unreasonable for large three 

dimensional problems. 

d) Another key component of ELAFINT3D, the Lagrangian Particle Tracking has 

not be parallelized in the current thesis. The multi weight options in ParMetis 

can be exploited to create well balanced loads for both fluid and particle 

meshes. But this is another situation that requires optimization due to the multi-

physics involved in the application itself. 

 

In conclusion, an efficient and general purpose tool capable of tackling a variety of 

moving boundary problems has been developed. The numerical techniques employed in 

this tool are easily to formulate and implement. The accuracy and efficiency of the 
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current tool has been presented through a series of benchmark simulations. A high 

performance computing capability has been incorporated into ELAFINT3D framework. 

Several large scale three dimensional applications have been simulated with this 

framework. The performance of the tool for these problems provides great promise. By 

fine-tuning some of the implementation aspects, this tool can be used to solve many 

complex multi-scale problems. 
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